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FOREWORD

This manual is a basic course in Physics 4, titled Rational Mechanics. It is part of the core
curriculum for the 3™ semester of the common foundational program in the sciences and
engineering field. It is intended for second-year undergraduate students (LMD system). This
document adheres to the syllabus of Rational Mechanics for the fields of Civil Engineering,
Mechanical Engineering, Public Works, Aeronautics, and Hydraulics, as taught at the Faculty
of Technologies of Djillali Liabes University in Sidi Bel Abbes. It is written in the form of

detailed lectures with solved applications. The content is organized into five chapters.

The first chapter serves as a mathematical review aimed at providing students with the
foundational knowledge required for understanding the course. It includes operations on

vectors, moments, and torsors.

The second chapter addresses the statics of rigid bodies. It introduces fundamental concepts
in statics, such as material points, perfect rigid bodies, forces, moments, wrenches, the
equilibrium of force systems, constraints, reactions, operations on forces, and the equilibrium

of solids in the presence of friction.

The third chapter presents the kinematics of rigid bodies, focusing on mechanical motion

from a purely geometric perspective, without considering the causes of the motion.

The fourth chapter deals with concepts related to mass, the center of mass, moments of
inertia, and products of inertia, highlighting their mechanical significance in the study of

kinetics and dynamics.

The fifth and final chapter of this document focuses on the fundamental principle of the
dynamics of material systems. The primary objective of this chapter is to study the general

theorems governing dynamics.

Dr LIAMANI Samira



Introduction

Rational mechanics is a fundamental branch of classical physics that deals with the laws of
motion and the equilibrium of bodies. It relies on rigorous mathematical principles and
applies fundamental mechanical concepts such as force, motion, mass, and energy to various

physical systems.

Its primary goal is to analyze and predict the behavior of material systems based on the
interactions they experience, whether gravitational, elastic, or due to external forces. The
discipline traces its origins to the works of great scientists such as Isaac Newton, with his
famous laws of motion, and Joseph-Louis Lagrange, who developed an analytical

reformulation using the calculus of variations.

Rational mechanics plays a central role in scientific education, as it fosters analytical skills
and rigor in modeling physical phenomena. It also serves as a conceptual bridge to more

advanced theories such as analytical mechanics and fluid mechanics.

In summary, rational mechanics is a cornerstone of science, enabling the explanation and
prediction of natural phenomena with remarkable precision while laying the groundwork for

modern scientific and technological advancements.
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Chapter I: Mathematical Tools

Chapter I: Mathematical Tools
1.1 Introduction

The modeling of real space, considered within the framework of classical mechanics as being
three-dimensional, homogeneous and isotropic, supposes the introduction of mathematical
tools such as vectors, and notions about torsos.

In this part we will present the reminders and all the mathematical operations on vectors. We
will also develop the study on torsos which are very important mathematical tools in classical
mechanics, particularly in solid mechanics. The use of torsors in mechanics makes it possible
to simplify the writing of equations relating to the fundamental quantities of mechanics.

1.2 Definition of a vector

Some quantities cannot be described by real or scalar numbers because it is necessary to
specify their intensity, their direction and their sense. This pushes us to use vectors to
represent them.

We call vector (ﬁ) a line segment having an origin (A)
and an endpoint (B) and defined by: (&)

His origin (A); y,
Its direction (the right (A)); A
Its sense (from point A to point B);
Its length or magnitude (the distance AB). Figure 1.1: Graphical presentation of a vector
Vectors are commonly represented by arrows.
1.2.1 Types of vectors

©
The vector can be represented in several types:

» A vector is said to be linked if its point of application is fixed (fixed v
vector).
Example: The position of the vector is completely defined on the support right 'F
B
» A vector is said to be free if its point of application and its direction are S /

unknown and its other components are known. (free vector)
C~

Example: The vectors AB ,CD and EF are representatives of the same vectorV .

» A vector is said to be sliding if its point of application is not fixed. (sliding vector)

Example: Vectors@, CDare representatives of the same vectorV .

]
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> A vector is said to be unitary if its module is equal to 1. e /L,
1.2.2 Vector calculation y
1.2.2.1 Equal vectors
A B
Two vectors ABand CD are considered equal if they have the same B
length, the same direction and the same sense.
This equality makes ABDC a parallelogram. C D

1.2.2.2 Addition of vectors

Given two vectors V, and V/, with V V; , V, € R3 the sum of these vectors is a vector
V, R

The sum of these two vectors is carried out by transporting the origins of the two vectors to a

single point A in order to construct a parallelogram whose sides are V/, and \V/, . The

e

resulting vector V/ is defined by: V; = V. +V/,, .

If (a1, a2, a3) and (by, b2, b3) are the components of the vectors \71 and \Z respectively:
\Z:a1i+a2]+a3E ; \72:b1i+b2]+b3E

The sum of the two vectors:

e

V. =0+ = (& +b)i+(a, +b,) ]+ (a, +by)k

Figure 1.2: Parallelogram law

From the construction of the parallelogram, we can deduce another graphical method for the
addition of vectors. This method is known as the triangle law. We will only be able to draw
half of the parallelogram. In order to add two vectors, we think of them as displacements. We
carry out the first displacement, and then the second. So the second displacement must start
where the first one finishes.

-
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7,

Figure 1.3: Triangle law

One of the things we can do with vectors is to add them together. We shall start by adding two
vectors together. Once we have done that, we can add any number of vectors together by
adding the first two, then adding the result to the third, and so on. This way of proceeding
graphically translates the polygon law.

Figure 1.4: Polygon law

On the other hand, the summation of the vectors is:

» Commutative: we can add vectors in any order we want say that vector addition is:

V, +V,= V,+V,
> Associative: V. +(V, +V,)= (V, +V, ) +V,
> Distributive compared with the vector sum A(V, +V, )=A V, +A 'V,

> Distributive compared with the scalar sum: v (A1 +22) “V + AV

> Identity Element for Vector Addition: There is a unique vector, O ,that acts as an

identity element for vector addition. For all vectors\Z V,+0 =V,

> Inverse Element for Vector Addition: For every vector V , there is a unique inverse
vector V = -V such that V + (-V ) = O

1.2.2.3 Subtraction of vectors

Subtraction of two vectors V, -V, is the vector V defined as the addition of the vector

V. to a vector V" equal and opposite toV/, .

.
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Figure 1.5: Subtraction of two vectors

1.2.2.4 Scalar Multiplication of Vectors
Vectors can be multiplied by real positive numbers. Let x be a real number and a \71 vector,
then the multiplication of \/, by x is a new vector\v/,, :

If the vector \/, has components (ai, a, as) such as V; = ai+a,j+ak

The vector \/, would be written: \Z = Xaii + Xag_j + XaSE z
Scalar multiplication of vectors satisfies the following properties:
a) Associative Law for Scalar Multiplication: A1 (Xz\7 )= 2V
b) Distributive Law for Vector Addition: \(V, +V, )=AV, AV, ;

c) Distributive Law for Scalar Addition-: (A1 + A.2) V=%V +r2V ;

d) ldentity Element for Scalar Multiplication: The number 1 acts as an identity element
for multiplication, 1.V =V,

1.2.2.5 Modules of a vector (Standard)
Let the vector V=Xi+ Y ] + zK

The Pythagorean Theorem is used to calculate the modulus or length of the vector, Such as:
‘M‘ = /X2 +y2+7°

Application example

Let A (2, 5) and B (-3, 1) be two points and AB a vector.

Determine the coordinates and modulus of the vectorﬁ )
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()
Ye = Ya 1-5 -4

The vector module: HA_B"‘ = \/(—5)2 +(-4) so HEH — /45

1.2.3 Decomposition of vectors

We have shown so far that it is always possible to replace two or more vectors by a single
vector. Conversely, it is always possible to replace a single vector v by two or more vectors.

These vectors are called the components of the original vectorV . We must consider two cases
of particular interest:

1. One of the components \71 Is fixed. We calculate the second component using the triangle
law.

2. The two directions of decomposition are given. The magnitude and orientation of the
components are obtained by applying the parallelogram principle.

1.2.4The vectors Product

There are two kinds of multiplication involving vectors. The first is known as the scalar
product. The second product is known as the vector product.

1.2.4.1 Scalar product of two vectors

Let there be two vectors \71 and \Z their scalar product is a product which gives as result a

scalar, (Fig. 1.6): \71'\72 = M r\z cosé

Figure 1.6: Scalar product

Such that 0 is the angle between the two vectors. The angle 0 is always chosen to lie between
0 and 7, and the tails of the two vectors must coincide.

The scalar product of two vectors is:

> Commutative: V, .V, = V, .V

1

» Associative with respect to the multiplication of a scalar: X(\Z \Z ) =\Z . (X.\Z )

-
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> Distributive compared with vector sum: \Z(\Z +\Z) :\71\72 +\Z\Z ;

» Generally, whenever any two vectors are perpendicular to each other their scalar
product is zero because the angle between the vectors is 90 and c0s90° = O0:

Vi LV, =V,V, =0
Analytical expression
The scalar product can be defined by the analytical expression: \Z\Z =aibi+azho+ashs
Example
V, =3x+2y -1z ; V, =4x+1y + 72
V.V, = (3x4) + (2x1) +(-1x7) ; V,V, =7
1.2.4.2 Vector product of two vectors

The vector product is a vector operation carried out in oriented Euclidean spaces of dimension
3, this operation does not exist in 2 dimensions.

Consider two vectors V/; and V, with V \V/, , V, €R®

—_—

The vector product of these two vectors is a vector V5 € R® such that: V5 is a vector

perpendicular to \/, and \/,,

=l ::l
-
x|

Figure 1.7: Vector product

sin a.n

=l
n is a unit vector perpendicular to the plane containing a by \71 and \Z in the sense defined
by the right-handed screw rule;

» The modulus of the vector product is equal to the area of the parallelogram formed by \71

and Vv, ;

<l
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* The vector product is distributive on the left and right for the vector sum:
Ve +V;)AV; =V, AV, +V; AV,
U; A )= AV 4] AV
» The vector product is associative for multiplication by a real number:
AV, AV, =0V, AV,)
Vi ALV, =h (VA V)

* The vector product is antisymmetric (anticommutative)

V, AV, =-V, AV,

If we apply this property to the vector product of the same vector, we will have:
V, AV, =-(V, AV, )=0

* We deduce from this property that the vector product is null if:

- The two vectors are collinear;

- One of the vectors is null.
V, //V, soVv, AV, =0
Analytical Expression

The vector product can be calculated by the direct method in Cartesian coordinates in a direct
orthonormal coordinate system:

\Z :a§+ﬁ§/+y2

\Z :5;+09+TE

\Z /\\Z = (a§(+ﬁ§/+ﬁ )/\(5;<+a§/+r2)

Vi AV, = (Br-yo)x—(at—79)y +(ac - Bo)z

It can also be determined by the determinant method:

-l
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X y z p p
N, IRV A (A A A
Vy AV, = (¢ p o TX o ry+5 O'Z
0O o T
V. AV, = (Br-yo)x—(ar—yd)y +(ac— fO)z
Application example
V, =3x+2y—1z
V, = 4x+1y +7z
Xy z
- y 2 -1- 13 -1~ |3 2-
Viavg= B2 A=l el v, )
4 1 7
V. AV, = (14+1)x—(21+4)y+(3-8)z

_—

V, AV, = 15X 25y 57
1.2.4.3 The mixed product

We call the mixed product of three vectors \Z,\Zand\Ztaken in this order, the real number

defined by: V_.(V, AV,)

The absolute value of the mixed product is the volume of the parallelepiped formed by the 3
vectors.

The mixed product is null if:
- The three vectors are in the same plane;
- Two of the vectors are collinear;
- One of the vectors is null.

It is easily shown that, in a direct orthonormal basis, the mixed product is a scalar variant by
direct circular permutation of the three vectors because the scalar product is commutative:

V.V, AV;) =V, (V AV,) =V, (V) AVY)
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————————

Figure 1.8: Mixed product of three vectors
1.2.4.4 The sine rule in a triangle

Study the triangle ABC, we can establish a relationship between the three sides and the three
angles of the triangle.

In the triangles ABD and CBD, we have:
sina = DB ,and sin g = DB from where
AB BC

AB sina = BC sin 3, we deduce: BC __AB

sina sin B

A

Figure 1.9: Rule of sinus in a triangle
Likewise for the triangles AEC and BEC:

We have: sin o :E ,and sin(z —0) = EC
AC BC

From where AC sino. = BC sin (1 — 0) = BC sin 0

We deduce: E = A—C

sina sin @
We finally deduce a relationship called the sine rule in a triangle:

BC AB AC
siha sing siné
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1.2.5 Projection of vectors

1.2.5.1 Orthogonal projection of a vector on an axis
Let be any vector, and an axis (A) defined by its unit vectoru .

The orthogonal projection of the vector V on the axis (A) defined by the component \7; of this
vector on this axis.

—_— = -

\Z =(V.u)u

=l

(4)
i
=

Figure 1.10: Orthogonal projection of a vector onto an axis

1.2.5.2 Orthogonal projection of a vector onto a plane

Given\7, an arbitrary vector, its projection onto the plane (n) defined by the normal n is the
component \/7 in the plane.

()

Figure 1.11: Orthogonal projection of a vector onto an axis

—_—

We can write the projection of V on the plane by the following relation: \/7 =V - V.

Whence V =V (n.n) And V. = (V .n)n
So:V_ =V (n.n)-(V.n)n
And we find the vector expression of the vector \/7 by the following double vector relation:

—_—

V_= ﬁA(\7A ﬁ)

q
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1.2.6 Operators and vectors

1.2.6.1 Gradient operator in an orthonormal frame R (O, i,],E)

- 0: 0O0- 0=t
We define the vector operator noted: Y = &' + 5 J+ S K as being the derivative in

space along the three directions of the unit vectors.

The gradient of a scalar U is defined as being the vector derivative following the three
respective directionsi,],R with respect to the variables: x, y, z.

o oUu- ouU- _
radUu (x,y,z2)=—i+—j+—Kk Or du =VU
g (%, Y,2) = 8yJ o~ gra

Example
U= 3xy-2zx+5yz

6_U =3y-2z, 8_U =3x+5z2, 6_U =-2X+5y
OX oy oz

gradU (x,y,z) = 3y - Zz)i +(3x + 52)] + (—2x +5y)E
The gradient of a scalar is a vector.
1.2.6.2 Divergence operator in an orthonormal reference frame R (O, i,],E)

The divergence of a vector V is defined as the scalar product of the operator:

V=Liv 24Ok o AT
Ox oy a7 by the vector ; rotV =V AV

roiv =[ Ziv 254 k| abvivy, foviK)
ox oy oz

The rotational of a vector is also a vector.

0 N, Ny
x v, |y a
In matrix form we will have: rot(V) = i/\ Vv, = Ny _ N,
oy 0z  oX
o ||y _av,
674 ox oy
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1.3The Moments (Torque)

A moment represents a vector physical quantity reflecting the ability of this force to turn a
mechanical system.

Moments are vectors, and like any vector, they are defined by four parameters that define all
vectors: sense, direction, intensity and point of application.

The direction of the moment is determined in accordance with the trigonometric direction
(also called geometric direction).

» The positive trigonometric direction corresponds counterclockwise;
» The negative trigonometric direction corresponds clockwise.

1.3.1 Moment of a vector relative to a point

The moment W of a vector V of origin B (sliding or fixed) with respect to a point A is equal

to the cross product of the position vector AB with the vector V (Fig. 1.12 (a))
Itis written: M, (V) = ABAV

The triad formed respectively by the vectors (ﬁ Y W ) is direct.

(a) (b)
Figure 1.12: Moment of a vector with respect to a point

Example

=
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Noticed:

The moment at point A is independent of the position of the vector V on the axis (A). Indeed,
we have (Fig. 1.12 (b)):

M, (V)= ACAV = (AB+BC)AV
But we have: BC //V = BC AV =0 s0 M, (V)= ABAV
The moment W (\7) is perpendicular to the plane formed by the vectors ABandV .

Distance AB is often called to as the lever arm.

1.3.2 Moment of a vector with respect to an axis

The moment W (\7) of a vector V with respect to an axis (A) defined by a point A and a unit

vectoru , is equal to the projection of the moment W (\7) on the axis (A).

M, (V) =(M, (V).u)u

Figure 1.13: Moment of a vector with respect to an axis

Example
For each case illustrated in the figure, determine the moment of the force about point O

| N\
0O Sk
| o - e o
2m - (d) Jeos A N
(a) (¢)
e Zm -
- H 1m
l \ 7 kN
O ey
7 - s
IR - IlsmdS' n
45 { 4m
60 b
(d) A

o
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Solution:

Fig (@) Mo =(100 N)(2m) =200 N.m Fig (b) Mo = (50 N)(0.75 m) =37.5N.m
Fig (c) Mo =(40 Ib)(4 ft+2cos30 ft) = 299 Ib.ft

Fig (d) Mo =(60 Ib)( 1sin45 ft) =42.4 Ib.ft Fig(e) Mo =(7 kN)(4m—1m)=21 kN.m
1.4The Torsors

Tensors are mathematical tools widely used in mechanics. The use of tensors in the study of
complex mechanical systems is very convenient because it simplifies the writing of vector
equations. A vector equation represents three scalar equations, and a tensor equation is
equivalent to two vector equations, thus to six scalar equations. There are four different types
of tensors: the kinematic tensor, the kinetic tensor, the dynamic tensor, and the action tensor.

1.4.1 Definition of a Torsor

A tensor, which we will denote as [T], is defined as a set of two vector fields defined in the
geometric space and having the following properties:

a) The first vector field associates with every point A in space a vector independent of point
A, called the resultant of the tensor [T].

b) The second vector field associates with every point A in space a vector that depends on
point A. This vector is called the moment at point A of the tensor [T].

1.4.2 Rating

The resultant R and the resultant moment W at point A constitute the reduction elements of
the torso at point A.

Let R be the resultant of the n sliding vectors: \Z\Z\Z\Z applied respectively to the
points: By, Bz, Ba...... Bn. We can define two quantities from this system of vectors:

> The resultant of the n vectors: R = Zvi ;
i=1

_—

» The resulting moment at a point A in space is given by: m = Z AB, AV, .
i=1

The two quantities constitute the torsor developed at point A associated with the given vector

—

system. We adopt the following notation: [T ], = {Mj,

A

Note: A torsor is not equal to a vector pair, but it is represented at point A by its reduction
elements.
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1.4.3 Operation on the torsors

Be the torsos [T1] and [T2] such as [T, | = {% and [T,]= {% and ) a scalar

1 2

1.4.3.1 Sum of two torsors

_—

The sum of two torsors [T1] and [T2] is a torsor [T] whose reduction elements R and M A
are respectively the sum of the reduction elements of the two torsors.

R=R +R,
[Tla=[Tia+[Toda & [Tlazd_ ¥ fe
M =M, +M,

1.4.3.2 Multiplication of a torsor by a scalar
The multiplication of a torsor by a scalar is given by the following expression:

AfT,]= {jﬁ. with % € R

1

1.4.3.3 Equality of two torsors

Two torsors are equal (equivalent), if and only if there exists a point in space at which the
reduction elements are respectively equal to each other. Let two torsors [T1] and [T2] be such
that: [T.]A = [T2]A equal to point A, this equality results in two vector equalities:

Ri=R,

1A :MZA

[Ti]a=[T2]a & {

1.4.3.4 Product of two torsors

We call the product of the two torsors [T]: and [T]2 the real defined by:

_—

¢ A=[Th ®[Tl= R.M,, +R,.M,,
1.4.3.5 Null torsors

The zero torsors denoted [0] is the neutral element for the addition of two torsors. Its
reduction elements are zero at any point in space.

[0] & {Mi,zo VAERS

A=
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1.5 Properties of moment vectors

1.5.1 Moments transport formula

R-YV
' _. at a point A in space we can determine the

Knowing the Torsor [T |, =4 —. P
] rl, M, =Y AB AV,

reduction elements of this same torsor at another point C in space.

The moment at point C is expressed as a function of the moment at point A, the resultant R
and the vector CA. We have in fact:

Mo =308 AV, = 33(CA + AB) AV, = 3CA AV, + 3 A8 AV, =CA A 37, + 3 A8, AV,
i=1 i=1 i=1 i=1l i=1 i=1

_—

M. —CAAR+M. So M_ =M. +CAAR

This very important relationship in mechanics makes it possible to determine the moment at a
point C by knowing the moment at point A.

1.5.2 Equiprojectivity of moment vectors

The moment vectors W at point A and W at point C have the same projection on the line
AC:

We say that the field of moment vectors is equiprojective.

_—

M. =M. +CAAR

=1

T

Figure 1.14: Equiprojectivity of moment vectors

Projecting the moment vector onto the CA axis amounts to making the scalar product with the
vector CA up to a multiplicative factor. We have the transport formula:

_—

Mc =M, +CAAR

Let us multiply this relation scalarly by the vector CA
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—_— B —— —_ _— _— —

CAM, =CA(M, +CAAR)=CAM, + CA(CAAR)

Or CAARis a vector perpendicular to CA then: ﬁ(ﬁxx ﬁ) =0
We finally obtain:
CAM, =CAM, or M..CA=M,.CA The scalar product is commutative.

_—

This expression expresses only the projections of the moment vectors M. and W on the
right CA are equal.

1.6 Type of Torsors
1.6.1Torsor Couple

We call a couple, a torso whose result is zero. The moment of a couple is a torso invariant and
therefore the scalar and vector invariants are null too.

RS

W¢O

Properties of the moment vector

The moment of a torsor couple is independent of the points of the space where it is measured.

—

We have: V1=V, such as: R :\Z +\Z =0 :>\72 =V,

The moment at any point A of the space is given by:

_—

M, ZE”A\Z—FE/\\Z:E”/\\Z—A_Q’/\\Z

_—

M, :ﬁA\Z_KQ»A\Z:@A\Z

Figure 1.15: Torsor Couple

It is clear that the moment at point A is independent of A. We will show that it is also
independent of points P and Q.
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Indeed we have: M, =QP AV, = (QH + HP) AV, = HP AV,

H is the orthogonal projection of the point P on the right support of the vector\z :

In reality the moment of a torsor couple depends only on the distance that separates the two
supporting lines from the two vectors, it is independent of the place where it is measured.

Decomposition of a torsor couple

A

two sliders [T]. and [T]2 such that: [T]c = [T1] +[T2] where both sliders are defined as

follows: [T], = _RifR, =0
M =My, +M,

Let [T] a torso couple defined by: [T]. = {Mi, This torso couple can be broken down into

where P is any point
The invariants of the two sliders are null: 11= Mp-R =0 D12= Map R, =0
There is an infinite solution equivalent to a torso couple.

The problem is solved as follows:

a) Select a slider [T1] by:

—_—

- The result of the slider: & ;
- The axis (A1) of the slider, defined by a point P1 such as: (A1)= (P1, ﬁ; )

b) The slider [T2] is then defined as:

—_—

- Its resultantﬁ; =R

- Its axis (A2) is easily determined because it is parallel to (Al); it is then enough to know a

—_—

point P2 of this axis. Point P is determined by the following relationship: Ri A @ =M

This relationship uniquely determines the position of the point.
1.6.2 Sliding Torsor

We call slider any torso of non-zero result which admits a point P for which its moment is
null.
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M,R=0
This definition can be translated as:[ T] is a slider vV P

—

R«0

We know that the scalar invariant is independent of the point P where it is calculated. As the
result is not null then we can say that: a torso is a slider, if and only if, there is at least one
point in which the moment of the torso is zero.

Moment at a point of a slider

Let [T] be a given slider. There is at least one point where the slider moment is zero.

_—

At this point we can write: M , = 0,

By the transport formula the moment at any point P is written:

_—

p=M, + A AP

=)
I
3l

|

—_—

S =RAAP

<
I

This relation expresses the moment vector at any point P of a slider whose moment is zero at
point A.

Axe of a slider

_—

Let [T] be a given slider and A any point suchas: M, = 0,

Let’s look at all the P points for which the torso moment is zero:
If M, =0 ©RAAP=0 ;

This relationship shows that vector AP is collinear to the resultant R .

The set of points P is determined by the line passing through the point A and unit vector
parallel to the resultant R .

This line is called the zero moment axis of the slider or slider axis. It represents the center
axis of the slider.

A non-zero resultant torsor is a slider, if and only if, its scalar invariant is null.
1.6.3 Any torso

A torsor is any, if and only if, its scalar invariant is not null.

_—

[T] is any torsoe M,.R#0
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Decomposition of any torso

Any torsor [T] can be decomposed infinitely into the sum of a sliding torsor [T1] and a couple
torsor [T2].

We proceed as follows:

a) Select point P

Choose a point P where the torso reduction elements [T] are known: [T ], = {M_,
p

The choice of point P will depend on the problem to be solved; we choose the easiest point to
determine. Once the choice is made, the decomposition of any torso is unique.

b) Slider Construction [T1]

- The result equal to the result of any torso: ﬁ; =R , With its axis passing through the point P
already chosen;

—_—

- The moment is zero on this axis: M, =0
. . : _ R, =R
The slider [T] will have for reduction elements: [T], =1 L.

c¢) Couple Torso Construction [T2]

-

- The result is zero: ﬁg =0,
- Couple torso moment is equal to any torso moment: M., = M—F:

The slider [T] will have for reduction elements: [T ], = {_R? [
Mo =M,

We thus obtain [T] = [T1 ]+[T2]

At each point initially chosen we can make this construction. All sliders obtained will have
the same result. They differ in their axes but keep the same direction because they are all
parallel to the axis carrying the resultant of any torso.
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Application exercises
Exercise 01:

Two points A and B, have for Cartesian coordinates in space: A (2, 3, -3), B (5, 7, 2)

Determine the components of the vector ABas well as its module, its direction and its
direction.

Corrected 01:

Vector AB is given by: AB=0B +0A = 3i+4]+5§

His module: AB = +/32+42+52 = /50

His direction: is determined by the angles (a, B, 0) it makes with each of the reference axes.

These angles are deduced by the scalar product of vector AB by the unit vectors of the
orthonormed reference frame:

o= (AB,i): ABi=AB.1cosa e cosa= ot = 3 - 04245 q=6489°
AB.1 /50
B—(HB?)'HB*'—ABlcosB@cos[}—@—i—0565=>[3—5554°
) AE ' AB1 50 '
S ABk 5
0= (AB,k): ABk =AB.1c0S0 & cosf= —— =—=0.707 = 0 = 44.99°
AB.1 /50

His sense: as the scalar product of vector AB with the three unit vectors is positive then, it
has a positive sense following the three axes of the mark.

Exercise 02:

Be the vectors\Z,\Z, \73 and \Z such as:

— > —

V, =1+4k, \72:25+y]+zﬁ, \Z:i—2]+4E , \74:4i+y]+2E
1) Determine y and z for vectors \Z and \Z to be collinear,

2) Determine y for vectors \73 and \Z to be perpendicular,

Corrected 02:

_ —

1. \Z and \Z are collinear: (»):V2 AV, [
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1\ (2) (0) (-4y) (0 iy
\ZA\ZZOAy=0:>8—Z—0:>{y_
z=38
4 z 0 y 0

2. \73 and \Z are perpendicular:\TS. \Z:O

V, .V,=4-2y+8=0©y=6
Exercise 03:

Let two torsors [T1]a and [T2]a be defined at the same point A by their reduction elements in
an orthonormal coordinate system: R (O, i,],E) :

A e AN e

1) Determine the central axis and the pitch of the torso [T1]a;

2) Determine the self-moment of the torso [T1]a, show that it is independent of point A;
3) Construct the torsor [T]a= a[T1]a +b[T2]a witha and b € R;

4) What relation must a and b verify for the torsor [T]a to be a couple torsor;

5) Show that the couple torsor is independent of the point where it is measured,;

6) Determine the simplest system of sliding vectors associated with the sum torsor:
[Ti]a +[T2]A.

Corrected 03:

1) Centerline and Torso Pitch [T1]a

Centerline: It is defined by the set of P points such as: OP = Rl/\—lz\/l“\ + /151
1
—E—S;L
-3 4 -3 -12 -3 17
OP=| 2 (Al =144 2 |22 13]+4 2 |=|-Bioa
17 17 17
2 -7 2 -5 2 5
-—+21
17
. R.M 1 T S 28
Torso pitch [T1]a: P =22 = — (-3i+2j+2Kk).(4i— j—T7k)=——
pitch [Td]a: R R? 17 J+2K)(4 == 7K) ==
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2) Self Torso Moment [T1]a: ﬁm = (=3i +2] +2K).(4i — | — 7K) = —28

The auto moment is independent of point A. Indeed, according to the transport formula we

—_— — —

can write: M, = M, +AB/\§£ :QW zﬁ.m+§.(ﬁAE)
R.M, =R..M, , it is clearly independent of point A

3) [T]a= a[Ti]a +b[To]ae [T], = {_R =aR, +bR,

M, =aM,, +bM,,

], = R=-3(a—h)i+2(a-b)j+2(a-b)k
" |M,. =4@@a+b)i-(a-b)j-7(a-b)k

4) Condition for [T]a to be a torque torsor: the result must be zero:
R=0= a=h
The time in this case will be equal to: M, = 4(a +b)i =8ai

5) The moment of a couple torsor where the resultant ﬁ; and ﬁ; have the same module but
opposite directions and applied to points A and B is written:

m=aAE+@AE=&AE+@A(—ﬁ)
M = BAAR = (B + FA) AR

M, =HAAR, =—HAAR, =HAAR,

The moment of a couple is independent of the distance between points A and B, it depends
only on the distance which separates the two support lines of the resultants. This distance is
called the lever arm.

6) Simple system of sliding vectors associated with the torso sum: [T1]a +[T2]a.

The torso sum [T]a is given by: [T], = _R=0 . &
M, =8I

The resultant can be decomposed into any two vectors of the M, i
same module and opposite direction, one of which is placed at /'
point A, we then obtain: = >

- I

M, = AAAV + AB A (-V) = AB A (-V) =5i

System of two sliding vectors: (A, \7) and (B, -\7), such as

—_ —

V.M, =0
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Chapter I1: Solid Statics

1.1 Introduction

Statics represents the field of rational mechanics that deals with the study of the equilibrium of
mechanical systems considered at rest relative to the reference frame in which the observer is located. The
mechanical system studied can represent any association of solid or fluid physical bodies, a point or a set
of material points, a part, or the whole of a solid.

In this chapter, we address concepts related to material points, perfect solid bodies, force, the moment of a
force, and external force torsors. We then provide the conditions for static equilibrium and the different
types of connections and reactions. Finally, we explain some operations on forces concerning the
reduction of a system of forces to a resultant and the decomposition of a force into several components.

We will see that static problems can be solved using graphical methods, analytical methods, or a
combination of both methods.

11.2 Fundamental Concepts of Statics

11.2.1 Material Point
A material point is defined as a material particle that possesses mass and negligible dimensions under the
conditions of the considered problem. The difference compared to the geometric point lies in the fact that
the material point is assumed to contain a certain amount of concentrated matter.

11.2.2 Perfect Solid Body
A perfect solid body represents a theoretical model of the real solid, with natural and technological reality
being more complex. A perfect solid body is made up of a set of material points that act on each other
according to the principle of action and reaction equality and maintain the same distances between them
under all circumstances, regardless of the applied external force systems. Therefore, a perfect solid body
does not undergo any deformation.

11.2.3 Force

A force represents any interaction of one body on another. In mechanics, forces are used to model various
mechanical actions (pressure, friction, contact actions, electrostatic force, electromagnetic force, etc.).

A force is represented by a force vector with the general properties of vectors: a point of application (A),

a direction (or line of action) (A), a sense (from A to B), and a magnitude HABH .

@)

Figure 11.1: Vector representation of a force

5
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We can separate the action of a force on a body into two effects, external and internal:

e External forces can be either applied forces or reaction forces.
e Internal forces are resultants of stresses caused by external forces.

The unit of force is the Newton, which corresponds to the force that imparts an acceleration of 1 meter
per second squared to a body with a mass of 1 kilogram.

11.2.4 Force Systems

A force system is defined as the set of forces Fi that act simultaneously on a material point or on a solid.

/

=k x F F"‘-
i —‘--___*II'.III
tON ;)

TN S

Figure 11.2: Force System
Force systems are classified into three categories:

1. Reaction forces: If a solid body exerts a force on another body, the second body exerts an equal and
opposite force on the first body.

\l El S;
w 5

Figure 11.3: Reaction Forces

=
e

2. Friction forces: Friction force exists when two real solids are in contact. Friction force always opposes

the direction of movement.
L

Figure 11.4: Friction Forces

=
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3. Tension forces: A force that pulls on an element of a body, such as the tension exerted by a string or
spring.

Figure 11.5: Tension Forces
11.2.5 Operations on Force (Composition, Decomposition, Projection)

11.2.5.1 Geometric Decomposition of a Force

Consider a force F applied at the origin O of an orthonormal coordinate system. The components of this
force are defined by:

F=F +F +F,=Fi+F j+FKk

Such as Fx=F.cosbx, Fy=F.cosby, F;=F.cos0,

With: F°= F3+F2+F2,

7
P

v

Figure 11.6: Geometric decomposition of a force

The angles 0y, 0y, and 0 are the three angles defined by the projection of the force on the three axes OX,
OY, and OZ respectively.

Figure I11.7: Euler angles

&
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F F

The magnitude of the force can be expressed using cosines direction: = =
cos®, cosd, cosdo,

11.2.5.2 Resultant of Two Concurrent Forces

Given two forces ﬁand E applied at a point O of the solid, the resultant R can be determined from the
parallelogram formed by these two forces (Figure).

The magnitude and direction of the resultant R are determined by the diagonal of the parallelogram
constructed on these two forces.

_ —

R=F +F,

And its magnitude is: R = [F + F2 + 2F,F, cos¢

Figure 11.8: Resulting from two forces

The direction is determined by:

F F K R
sing, sing, sing, sing

11.3 Force Diagram

This is a graphical method used in the case of plane problems to determine the intensity of forces acting
on a system in equilibrium. A body subjected to two forces is said to be in equilibrium if these forces are
opposite in direction and have the same intensity and direction. If the body is subjected to three forces, for
the body to be in equilibrium, the three forces must be concurrent. This relationship comes from the
resultant equation derived from the fundamental principle of statics; the two sliders have the same central
axis (the points of application of the forces are on a line collinear with the direction of the forces); this
relationship comes from the moment equation derived from the same principle.

Figure 11.9: Force diagram

&
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11.4 Joints and Connections
11.4.1 Degrees of Freedom of a Free Solid

A solid is said to be free if it can move in any direction without restriction. Six independent directional
movements are considered:

o Three degrees of translation
o Three degrees of rotation

The degrees of freedom are often presented in the form of a matrix where the columns give a type of
movement (translation or rotation) and the rows the considered direction (X, y, or z).

Figure 11.10: Degrees of freedom

* Degrees of freedom refer to the number of independent parameters or values required to specify the
state of an object.

* For a body to be in static equilibrium, all possible movements of the body need to be adequately
restrained.

* Free body diagrams are used to identify the forces and moments that influence an object.

 Drawing a correct free-body diagram is the first and most important step in the process of solving an
equilibrium problem.

11.4.2 Definition of a Connection

Connections are material bodies that oppose the movement of the solid. There is said to be a connection
between two solids when one solid cannot move freely relative to another, reducing its degrees of
freedom compared to a free body. The considered solids in mechanics can be free or connected depending
on the case.

A solid is said to be free if it can move in any direction. For example, a stone thrown into space is a free
solid. A solid is said to be connected if it can only move in determined directions or is constrained to
remain immobile.

Material bodies that oppose the movement of the solid are called connections, and the forces they exert on
the solid are called reaction forces.

.
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11.4.3 Different Types of Connections and joints

Components in machinery, buildings etc., connect with each other and are supported in a number of
different ways. In order to solve for the forces acting in such assemblies, one must be able to analyses the
forces acting at such connections/supports.

11.4.3.1 Free Connection

This connection is essentially the absence of a connection; the solid is "left to itself" (e.g., a satellite in
space or a projectile). There are six degrees of freedom and no transmitted contact force (no reaction).

11.4.3.2 Simple Support (Roller)

One of the most commonly occurring supports can be idealized as a roller support. Here, the contacting
surfaces are smooth and the roller offers only a normal reaction force. This reaction force is labeled Ry ,

according to the x- y coordinate system shown. This is shown in the free-body diagram of—conventional
the component.

The solid simply rests on a solid or a polished surface (horizontal, vertical, or inclined) (Figure I11.11.a, b)
or on a cylindrical roller (Figure 11.11.c). The reaction of the surface is applied to the solid at the point of
contact and directed along the normal to the support surface. It is called the normal reaction and is

denoted byR .

A simple support blocks movement in one direction and leaves two degrees of freedom.

Ry
R B B
R._a F
[ 1 O
] A
Figure Il.11.a Figure 11.11.b Figure 11.11.c

Figure 11.11: Point connection

11.4.3.3 Pin joint/hinged support (Double Supports)

Another commonly occurring connection is the pin joint. Here, the component is connected to a fixed
hinge by a pin (going “into the page”). The component is thus constrained to move in one plane, and the
joint does not provide resistance to this turning movement. The underlying support transmits a reaction
force through the hinge pin to the component, which can have both normal (Ry) and tangential (Rx)
components.

In practice, the solid body is sometimes articulated by:
e Anarticulated support (Figure 11.12.a)

e A cylindrical articulation (sliding pivot connection, annular linear connection) (Figure 11.8.b)
e Or aspherical articulation (ball-and-socket joint) (Figure 11.8.c)

-
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The solid is in contact with another solid with a cylindrical surface, blocking translations in two
directions. The solid thus has a translation along the axisOz and a rotation around the same axis. The
reaction along the axis Oz of the articulation is zero.

—_—

R =0 R=R,+R

Figure 11.12.a Figure 11.12.b Figure 11.12.c
Figure 11.12: Articulated solids
11.4.3.4 Flexible Connection (String, Rope, Chain)

The reaction T is called tension. It is applied at the attachment point of the flexible link to the solid and
directed along the flexible connection (the string, rope, chain, etc.) (Figure 11.13).

Figure 11.13: Flexible connection

11.4.3.5 Fixed Connection

Finally, in Figure 11.14 is shown a fixed (clamped) joint. Here the component is welded or glued and
cannot move at the base. It is said to be cantilevered. The support in this case reacts with normal and
tangential forces, but also with a couple of moment M, which resists any bending/turning at the base.

The fixed connection between two solids blocks their relative movements in all directions, preventing any
movement (e.g., a cantilever beam). There are six reactions (three force components and three moment
components). (Figure 11.14)

—

The reactions are represented by components R=Ri+RT+Rjand a momentM—A that prevents the
rotation of the solid.

)
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Figure 11.14: Connection Embedding
I1.5 Conditions for Equilibrium of a Rigid Body
11.5.1 Basic Conditions for Equilibrium of a Rigid Body

A solid body is in static equilibrium when several forces act simultaneously on it and these forces do not
modify its state (state of rest or its state of movement).

For a solid body to be in static balance, the torso of external forces must be zero:

R 0
Th=| - - ==
M(F,) 0

For a rigid body subjected to external forces and in equilibrium, the following conditions must be met:

n —
e The resultant force of all external forces acting on the body must be zero: R = Z F =0
i=1

n —
e The resultant moment of all external forces about any point must be zero: Z M(F)=0
i=1

These two equilibrium conditions can be translated into six analytical equations by the projection of the
elements of the force torso onto the axes of an orthonormal reference frame R(O,i,], E) X

1. Three equations related to the resultant of external forces:

X
>
I
T
=
I
ol

>
Il
N

pell
Il
Py
Il
Ne
T
Il
ol

>
Il
N

Zy)
Il
1=
T
Il
ol

N

>
Il
N

2. And three equations related to the moment of forces relative to point O:

M, (F)=0
M, (F)={M, (F)=0
M, (F)=0

&
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11.6 Equilibrium of Solids in the Presence of Friction
11.6.1 Sliding Friction
Sliding friction is the resistance that opposes the sliding of two rough surfaces in contact.

11.6.1.1 Experiment

Consider a solid of weight [3 resting on a horizontal surface. We apply a horizontal force T to this solid
(Figure 11.15.a).

\ mi-chemin
L;L Fea Mouvement
F l'::I'r 1
..I'-.I 1'_"
Figure 11.15.a Figure 11.15.b Figure 11.15.c

1. Polished contact surfaces:

The weight force P is balanced by the reaction N . In this case, no force opposes the driving force T
(Figure 11.15.a). The solid is in motion.

2. Rough contact surfaces:

The weight force P is balanced by the reaction N . The solid can remain at rest; in this case, there is
another force that opposes the movement of the solid in the same direction and opposite to T (Figure
11.15.b). This force is called the sliding friction force F_f; :

Increasing the forcefgradually (Figure 11.22.c). As long as the solid remains at rest, the force F_f;
balances the driving force at each moment. The force ﬁ increases with T up to a maximum value Fmax

(F_f; < Fmax) corresponding to the instant the solid begins to move. The maximum force corresponds to

the limit case of the equilibrium of the solid, that is to say at the moment when it is halfway (in the
transition zone) between rest and movement.

11.6.1.2 Static Friction Force
Sliding friction is a resisting force that acts in the tangent plane to the two contact surfaces, in the

opposite direction to the driving force, and parallel to the contact surfaces. The friction force that acts
when the body is stationary (at rest) is called the static friction force.

*
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Figure 11.16: Static Friction Force

According to Amontons-Coulomb’s law, the maximum value of the static friction force ﬂ or E s
proportional to the normal pressure N of the solid on the support surface: ﬂ =f. N

Where fs coefficient of static friction that depends on the materials of the contact surfaces and their
conditions. Some values of the sliding friction coefficient fs for various materials are:

e Steelonice: 0.027
e Steel on steel: 0.15
e Bronze on cast iron: 0.16
o Leather on cast iron: 0.28

11.6.1.3 Kinetic Friction Force

The friction force acting when a solid moves over another is the Kinetic friction force EI: It is also

proportional to the normal reaction N : El; =f. N

Where fi is the Kinetic friction coefficient. It depends on the speed of movement and is always less than
the static friction coefficient (fi < fs).

11.6.2 Friction Angle

In-t_ ________ 'L'\: ]il ........ . N_
: Bl [ g = b .
\ T \*{_ T

e - = *

F, Mo

g

P P

Figure 11.17.a Figure 11.17.b

When a solid body is at rest, the total reaction of a rough surface, considering the friction, is determined
in magnitude and direction by the diagonal of the rectangle formed by the normal reaction N and the
friction force F_f; (Figure 11.24.a): R=N +ﬁ

The direction of R makes an angle B with N on the opposite side of T.As T increases, the direction of
R deviates more from the normal. The maximum deviation occurs when Fg = Fax .
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The maximum angle of deviation 3 is called the friction angle ¢ (Figure 11.17.b) and is expressed as:

Fo fN
tgp = = —==

= f. = ¢ = arctgf
N N s =@ of

11.6.3 Rolling Friction

Rolling friction is the resistance that occurs when a solid rolls over another. Consider a cylindrical roller
of weight P and radius R resting on a horizontal surface and acted upon by a driving force T at its

center of gravity (Figure 11.18.a).

Sens
¥ | du mouvement

%K -

Figure 11.18.a Figure 11.18.b

The support surface deforms under the roller's weight, shifting the point of application of the reactions N

and the friction force F_f; from point A to point C (Figure 11.18.b). The equilibrium equations of the roller

are:

Where Fs=T et N=P

The couple (F«, T) tends to put the roller in motion, while the torque (N, P) opposes the movement and
tends to put the roller at rest. This last torque is called rolling resistance moment, m;, it is equal to the

moment of force N relative to point A.
mr = MA(N)
YMa(F) =Ma(N)-TR=0

Where mr=TR

At the instant the solid starts to move, the resisting moment reaches its maximum value. Experiments
show that this value is proportional to the normal reaction:

&
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(Mr)max = fr N

The proportionality coefficient f; is the rolling friction coefficient, measured in length units. At rest, we
have: mr < (my)max

TR<frN

Thus: T < LN
R

Generally, f—Rr is much smaller than the sliding friction coefficient fs, which is why when the rest is

disturbed, the roller starts to roll over the support surface without sliding on it.

11.6.4 Friction of a Cable on a Pulley

Sens du mouvement

Figure 11.19: Friction of a Cable on a Pulley

The relationship linking the two tensions T1 and T, of a cable on a rough cylindrical surface (Figure 11.26)

] ) T
is written as; —~ =¢*
2

Where [ is the angle of contact arc of the cable on the cylindrical surface, fs is the static friction
coefficient, and T is always greater than T, (T1 > T2) depending on the direction of movement. The
resultant friction force between the cable and the cylindrical surface is: F=T1 - T»

)
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MODELING THE ACTION OF FORCES IN TWO-DIMENSIONAL ANALYSIS

Type of Contact and Foree Origin Action on Body to Be Isolated
1. Flexible cable, belt,
chain, or rope _'r':_ = __ﬂ ~ Force exerted by
Weight of cable 7] | e a flexible cable is
negligible L T always a tension away
—— N from the body in the
Weight of cable ar / direction of the cable.

not negligible

2. Bmooth surfaces

Contact force is
compressive and is
normal to the surface.

/%,

3. Hough surfaces

\R
~_

s
N
!

)
£ ial
; a ta.ngent.!a compo-
nent F (frictional
R force) az well az a

Rough surfaces are
capable of supporting

normal component

4. Roller support

N of the resultant
Roller, rocker, or ball

contact foree K.
| support tranamits a

5. Freely sliding guide

T

=
XX
(D)

_—
L]
T

T
S,
N

Collar or slider free to
move along smooth
guides; can support
force normal to guide
only.

et
e
T,
s
'Iﬁ."ﬁ-
Py
¥, T,
4
N
N .
compressive force
normal to the
supporting surface.
N
N%

E



MODELING THE ACTION OF FORCES IN TWO-DIMENSIONAL ANALYSIS (cont. )

Type of Contact and Force Origin

Action on Body to Be Isolated

. Pin connection

Pin free to turn

A freely hinged pin
connection 1s capable
of supporting a force
in any direction in the
plane normal to the
pin axis. We may
either show two
components &, and
R, or a magnitude &
and direction & A pin
not free to turn also
supports a couple M.

7. Built-in or fixed support
A

[:n

—
—Weld

A built-in or fixed
support 1s capable of
supporting an axial
foree FF, a transverse
foree Vishear foree),
and a couple M
(bending moment) to
prevent rotation.

8. Gravitational attraction

-
i

The reaultant of
gravitational
attraction on all
elements of a bady of
mass m 15 the weight
W= mg and acts
toward the center of
the earth through the
center mass (7.

4. Spring action

Linear Monlinear

Neutral F F
P‘:'E"t"“n | I]ardenmi;

}uw—-—:-— / lémmg

Spring foree is tensile
if spring is stretched
and compressive if
compressed. For a
linearly elastic spring
the astiffness k is the
foree required to
deform the spring a
unit distance.
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Application Exercises
Exercise 01:
A homogeneous sphere O of weight 12 kN rests on two polished inclined planes AB and BC

perpendicular to each other (Figure). Knowing that the plane BC makes an angle of 60° with the
horizontal, determine the reactions of the two inclined planes on the sphere.

Solution 01: We remove the links of the sphere and replace them with the corresponding reactions
(Figure 1). The sphere is in equilibrium under the action of three forces:

e The weight P acting vertically downwards.
e The reaction NA perpendicular to the plane AB towards the center O of the sphere.
e The reaction NC perpendicular to the plane BC towards the center O of the sphere.

P

The geometric equilibrium condition is based on the closed force polygon rule. We start by constructing
the force polygon with the known force P. From an arbitrary point A1, we draw the vector P (Figure 2).

We place the origin of the next force, for example, Na, at the end B; of the force vector P . The magnitude
of WA is unknown.

Since the solid is in equilibrium, the force triangle P, Na, Nc must be closed, so the end of the force
vector N. must coincide with the origin of vector P, As.

] ] . P N N
Applying the sine theorem on triangle A1B1Cs: = A — c
PRYINg i e sin 90°  sin 60°  sin 30°

&
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sin 60°

sin 90

Thus: N, = P =10.4KN

_sin 30°

c - P =6KN
sin 90

Exercise 02: E‘“

Determine the magnitude T of the tension in the supporting cable and
the reaction (magnitude of the force) on the pin at A for the jib crane
shown. The beam AB is a standard 0.5-m I-beam with a mass of 95 kg

per meter of length.

Equating the sums of forces in the x and y directions to zero gives

> F,=0= A, =19.61c0s25°=0= A =17.77KN, » 5m
i=1
¥ T
n |
— — . I 25.
. =0= A, +19.61sin 25°~4.66=0= A =6.37KN A,
25 0= y TR

) 7 466 kN J’

> M, (F,) =0= (T c0s25°)0.25 + (T sin 25°)(5—0.12) ~10(5-1.5—0.12) — 4.{ 10 kN

i=1 Free-body diagram

From which T =19.61KN

Exercise 03:

For the system shown in the Figure, determine the magnitude of the force F and the reactions at the
cylindrical supports in A and B, knowing that friction at cylindrical surfaces C and D is negligible and we
have: Q =8 KN, r=5cm, AC = CB =50 cm et AK =40 cm.

Solution 02: We remove the links of the system shown in the Figure and replace them with the
corresponding reactions. According to the linkage axiom, the system becomes free under the action of an
arbitrary system of forces. Since friction in the pulley D is negligible, the tension in the cable CD remains
constant: T=Q=8KkN.
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To determine the magnitude of the force F and the reactions at the cylindrical supports in A and B, we
write the static equilibrium condition of the isolated solid body under an arbitrary system of forces. This
condition is translated by the nullity of the external force tensor in A or B. The projection of the elements

of this tensor on the axes is written as:

iﬁ.x 6, Y, =0, 3 F

F,=0=R,, -F+R,, = (2)
i=1
MAx(ﬁi):(J@RBz:O (3)
i=1
M, (F)=0< F.KA-Qr=0 (4)

& -R,,.AB+F.AB=0(6)

!

ZHZMBZ(Fi):ﬁa Ry, . AB-Q.BC =0 (7)

From the equation of equilibrium; F=1 KN
And from (4) it is determined: Rg; = 0 KN
And from (5) it is determined: Rex =4 KN
Thus, from (6), we determine: Raz =1 KN

From (7), determine: Rax =4 KN




Chapter I1: Solid Static
The verification of equations (2) and (3), confirms the obtained results.
Exercise 04:

A force F=100 N is applied to a solid block with a weight W=300 N, placed E ZE'

on an inclined plane (Figure). The coefficient of static friction on the inclined 4

plane at an angle a with respect to the horizontal is fs=0.25. Calculate the

frictional force required to maintain equilibrium and check the equilibrium of the block if fs=0.4. What do
you notice?

Let's start by calculating the magnitude of the frictional force capable of maintaining the block in
equilibrium. By assuming that F, is directed downwards and parallel to the inclined plane, we can

draw the diagram of the isolated block (Figure 1.26b) and write the equilibrium equaticns:

Z F,=0 = F-Wsna-F. =0 (1)
Z F,=0 = N-Wecosa=0 (2)
Knowing that sina — 3/5 and cos @ — 4/5,
We replace F and W by their respective magnitudes, and we find the following after calculation:
F.=-80N or F,—=80Ndirected upwards
and N =240N

The force required to maintain equilibrium is an 80 N force directed upwards parallel to the inclined

plane. Therefare, the block tends to move down the inclined plane.
The maximum frictional force:

The magnitude of the maximum frictional force is given by:
Fln;u( - f.-:un'fr
Flax — 0.25 x 240 = 60N
Since the value of the frictional force required to maintain equilibrium is F,. — 80 N, which is

greater than the maximum possible value Fi,,,, — 60 N, equilibrium cannot be maintained, and the

block will slide down the inclined plane.

In the case where f, — 0.4, the maximum frictional force is written as:
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Fipx — 0.4 2240 = 96 N

In this case, F;, — 80N < Fiu — 96 N, so the body can remain in equilibrium.
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Chapter I11: Kinematics of the Rigid Body
I11.1 Introduction

A rigid body is an idealization of a body that does not deform or change shape. Formally it is defined as a
collection of particles with the property that the distance between particles remains unchanged during the
course of motions of the body. Like the approximation of a rigid body as a particle, this is never strictly
true. All bodies deform as they move. However, the approximation remains acceptable as long as the
deformations are negligible relative to the overall motion of the body.

Kinematics of rigid bodies: relations between time and the positions, velocities, and accelerations of the
particles forming a rigid body.

Classification of rigid body motions:

- Translation: rectilinear translation, curvilinear translation
- Rotation about a fixed axis;

- General plane motion;

- Motion about a fixed point;

- General motion;

I11.2 Fundamental Assumptions

To study the motion of a material point P, or more generally a system of particles or solids, an observer
must identify their position:

e Inspace;
e Intime.

In classical kinematics, it is assumed that:

e space is Euclidean (three-dimensional);
o Time is absolute (independent of the observer).

111.3 Reference Frames
To fully study kinematic motion, the observer must define:

o a spatial reference frame linked to the observer with an origin O and an orthonormal basis

(i ] ,E) forming the trihedron (O,i : ] : E), which fully defines the spatial reference frame;

o atime reference (time scale) with an origin and a unit of measurement. In the MKSA system, the
second is the unit of time.

The spatial reference frame and the time reference together define the <space-time> reference frame

noted as (R). In this frame, at a given moment by the clock, the position of a point r (t) is defined by its
coordinates x (t), y (t), z (t) such that:

Or = x(0)i + y(t) j + z(K

The position of point P is known instantaneously in both space and time.

.
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I11.4 Motion Relative to Translating Axes

111.4.1 Trajectory

Let point M be identified in a fixed reference frame R (O,i ] ,E ). Its position is given at each instant t
by the vector (Figure 111.1):

r(t)=0M = x(0)i + y(t)j + z(DkK,

X(t)

The vector r(t) has components in the fixed reference frame at instant t. r(t) =1 y(t)

2(t)

Figure 111.1: Trajectory of a point
The displacement of point M in space is given by the parametric equations of coordinates (X, y, z) as

functions of time. By eliminating the time parameter, we obtain the trajectory described by this point in
space.

@: M(t): position of point M in R (O,i ] ,E ) at instant t.

r(t + At) =M(t+At): position of point M in R (O,i ] ,E) at instant t+At.

The displacement vector from @to r(t + At) is given by A @ = r(t+At)- @ :

The positions occupied by point M in space describe a trajectory (I') with respect to the chosen reference
frame R (O,i, j,k ).

111.4.2 Velocity Vector

The material point moves from position M(t) to position M(t+At) during the time interval At at an average
speed:

\T_W"_F(t+At)—F(t) _AI(t)
At At At

The instantaneous velocity vector is obtained when: At —0, defined as:

.
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V I|mV = lim —~% Ar(t) dr(t)
At—0 At—0 At At

This vector is always tangent to the trajectory and directed in the direction of motion.

111.4.3 Acceleration Vector

The derivative of the velocity vector in the same reference frame R (O,i ] ,E ) gives the instantaneous
acceleration of point M:

— V(t+At)-V(t) AV(t)
I At At

The instantaneous acceleration is:

- . V(1) \/ 2r
7 = lim - lim AV (t) _ dv (t) _ dar(t)
A—0 A—0 At At dt2

The two kinematic vectors help to understand the nature of the motion and to predict the different phases,
depending on whether the velocity vector is in the same or opposite direction to the acceleration vector.

I11.5 Coordinate Systems

The material point M can be identified in space within a fixed reference frame (R) centered at O by three
different but related types of coordinates:

o Cartesian: (X, Y, z) with unit vectors of the reference frame (i ] ,E);

o Cylindrical: (r, 8, z) with unit vectors of the reference frame (u, ue K);

e Spherical: (1, 0, ¢) with unit vectors of the reference frame (e €,,€, )

These three types of coordinates allow the description of all types of motions of point M in space.

111.5.1 Cartesian Coordinates

Also called rectangular coordinates. If point M is identified in R (O,i ] ,E ) by the Cartesian coordinates
(X, y, z), which depend on time, the position vectorOM would be written as: W:xi+y]+zE ;
X
OM =Xi+yj+zk ; OM ={y ; OM = [x2+y2+ 72
z

The velocity and acceleration vectors are deduced by the first and second derivatives:

dOM(t):%i+dy]+d_k ; written as: V(1) = Xi +y j + 2k

V(t) =
® dt dt dt

.




Chapter I11: Kinematics of the Rigid Body

With: ’V(t)‘ =[x+ y2t 22

\/ 2y » 2y - 27 &
dV(t):d Xi+d yj+d z

() = k ;writtenas:ﬂt :Xi Vi 'z'E
140 v rreiredl e yO)=Xi+yj+

With: ‘}(t)‘ =[R2+ 2+ 22 x/

o

2

=

i

Figure 111.2: Cartesian coordinates

111.5.2 Cylindrical Coordinates

If point M is identified by the cylindrical coordinates (r, 0, z), which depend on time, in a reference frame

R (O, uT , @ -k ), the position vector would be written as: OM = rm +2K

rcosé
In the reference frame R (O, u, ,u,, ,K), the vectorOM is written as: OM =1 rsin @
z

=i
: m;
=
=

Figure 111.3: Cylindrical coordinates

\7=—:r'a+r L+ 2k
dt

with: U _ dur Q:e‘@ , we obtain: V =ru, +réu, + 2k
dt do dt

V. =¢,V,=r0,V,=1
The acceleration is determined by:

20M \/ . TR
d°0M _dV _d(tu,) , d(rdu,)
a2 dt  dt dt

I
Il

—_— R

+r'%+r'6'ﬁg +ré, +rédu9
dt dt

(V] + 7k

v

r
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We have: du, _du, do_ .. du, du, do _

= —= ; = — =4, ;
dt do dt 7 dt do dt

The expression for acceleration becomes:

7= —r02)i, +(ro+2i0)d, + 7k ; Where y =/(F =122+ (rd + 2¢ 62+ 72 ;
v, =('r'—ré?z) 5 Y :(I’é+2f9) sy, =1

111.5.3 Spherical Coordinates

r cos¢cosd
In the reference frame R (O,i, j,k ), the vector OM has components: OM = r cosesin 6

rsin ¢
In spherical coordinates, it is written as: OM =OMe, =re,
Figure 111.4: Spherical coordinates
With:
8, =cosgl +sin ¢k ; &, =—sin gii +cos gk
U = Cos @&, —sin ¢& W_g % _ 5, % _ 4. % __
' ?'do 7 de "de " de
€ . G L L -
S0: —- =—@sin @l + CoSp— + (G COS gK = G oS @&, — pSin Pl + ¢ COS gk
de, o = o
" =6 c0s ¢&, + ¢(—sin ¢l +cos ¢k ) = G cos ¢&, + ¢E,
The velocity of point M is deduced by: V = d(j:\/l = d(;fr) =I€, + r% =8, +rocosg, + rege,
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VA
V =1V, =rfcosg
V,=r1¢

The acceleration is easily deduced by differentiating the velocity expression with respect to time:
ﬂ_ d(re,) . d(récos¢g,) N d(rge,)

?/:

dt  dt dt dt
dre) e
@: =€, +F(0C0S¢E, +¢€,) =€ +IIcosge, +I¢E,
(2): W = FOCOS @B, + rf cosge, —rogpsin ¢&, + récow%
de, d§, do .. .
—C=—"f —— =@ =-6(cos¢e. —sin
% = do’ (cos¢E, ¢%,)
W = PO COS &, + o cos g8, — rdgpsin g€, — r2cos p(cos ¢&, —sin ¢&,)
—d(rH(;(zsgoeg) —r 62c0s2¢E, + (1 9cosp—rdcosp—rogsin )g, + ro2cospsin ¢&,
d(r dé de
®: (m)_m TG, 4Tt = g8, + 18, + 1ot 2
dt do dt

de d(ree
As then: —% =—¢8, then alree,)
dt dt

=Fg€, +Irge, —ro%,
Summing the three terms, we get:
y, =F —r@?—r62cos2ep

7 =—FOC0S@+rOcosp+récosp—ropsin g = w,%(rzé) —rOgsin ¢
r

-1|I—\

(r2g) +r2sin pcosp

S

¥, =Tp+r02c0s@sin o+ 1p+rj=

111.6 Special motions
111.6.1 Circular Trajectory motion

A particle M is in circular motion if at any instant t, it is located at a point P on a circle (c) of radius "a"
and center O. Choose an orthonormal reference frame with origin O and unit vectors i and j , located in
the plane of the circular trajectory.
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Figure 111.5: Circular motion

Choose a circle in the (Oxy) plane so that its center coincides with that of the reference frame. Point P on
the circle is identified by two coordinates:

e The radius a of the circle and the angle 8 = (&,@) that the vectors OP make with the axis OX .

—_—

Let€, the vector be defined by: €, = % , then we have: OP =OP.€,

~ d6 )
The unit vector &, changes direction with the angle 6: hence C;ee =€, and deg =—€,

The radius of curvature is constant here; the velocity of point P is given by the derivative of the position
vector:
dOP _de

V(P)=——=a r:ader.d—e
dt dt do dt

= aég,

The acceleration of point P is deduced by:

dV(P) = a¢92e +a8§

y(P)=

0= o: angular velocity of point P;
6 = & angular acceleration of point P.

The velocity of point P is tangent to the circle with an algebraic value: V (P) = aée,

The acceleration of point P has two components: one tangential: 7, =aéd =a®, the other normal:

¥, =—a62=-aw?.

Note that the normal acceleration wvector y,is always opposite to the position vector OP :

7 - a8 ——oPOP
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Knowing the angular velocity and acceleration, we can determine the nature of the motion:

e If@ 6 >0, the motion is accelerated:
o If 0 8 <0, the motion is decelerated:

e If §=0= 6=Cte, the motion is uniform; the tangential acceleration is zero, but the normal
acceleration is not.

111.6.2 Helical Trajectory motion

A point P moves on a helical trajectory in a reference frame R (O,i ] ,E ) if it describes a right helix

drawn on a cylinder of radius a. The Cartesian coordinates of point P in this reference frame are given by
the parametric equations as functions of time t in the following form:

X(€) =acoso(t)
OP = y(0) = asin 9(t) a: radius of the helix
2(0) =ba(t)

The angle 0 plays the same role as in cylindrical or polar coordinates. The parameter b = Cte is called the
pitch of the helix. Note that when the angle 0 increases by 2w, the positions x and y do not change, but
along the vertical z-axis, there is a displacement of: 21 b ;

X(@+27)=x(0) ; y(@+2x)=y(6)

2(0+27)=b(0+27)=bO+26b =2(0)+ 2D

The position vector of point P in the reference frame R (O, i ] ,E) is given by:
OP =a8, =7k =af, +bek

The velocity and acceleration vectors are written as:

V(P)=afE, +bek =V,&, +V,K

7(P)=—-a62, +ade, +bék

Figure 111.6: Helical trajectory motion

.
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Note that the ratio between the components of the velocity along the unit vectors€, and k is independent
of the angle 0.

This expression indicates that any tangent at a point P on the helix makes a constant angle with the
vertical passing through point P and parallel to the vector. The helical motion is uniform if the angular

velocity of rotation is constant, hence independent of the time parameter (0= w=cte). In this case, the
velocity and acceleration expressions are: \7(P) =aak, + bak

With V (P) = w,/(a2+ b?)

}(P) =—aw?e, the acceleration is directed inward of the curvature. Previously, in curvilinear motions, it

was shown that the acceleration of point P is written as?(P)=(?j—\:r +—1n, where the unit
Y2,

vectors7 and i are the tangential and normal vectors at point P on the curve.

Applying this relation in the case of uniform helical motion where 7 =€,and fi =—€, are the tangential
and normal vectors at point P on the curve, we get:

- 2 2 2
y(P) =—aw?, =V—ﬁ = —aw%, :—V—ér < aw? :V— replacing the velocity by its expression, we
p p p
2(n2 2 2 2 2
@), @) P

0 a a

obtain: aw?=

Since the normal at P is always directed inward of the curvature, the center of curvature C can be easily

—

determined by writing the following relation: PC = —p8, .

111.7 Kinematics of the Rigid Body

A perfect rigid body (S) is a set of material elements whose mutual distances do not vary over time.
Consequently, the velocities between these points are not independent. Hence, the kinematics of the rigid
body deals with the distribution of velocities of points within a body independently of the causes that
generated the motion of the solid.

The mechanics of solids allow us to study the behavior of solids and determine all the kinematic
parameters of all its points regardless of the nature of the motion. The transport formula allows, by
knowing the speed of a single point of the solid, to easily deduce the speed of all points of the solid. The
objective of the kinematics of the solid is to know the position, speed, and acceleration of all points of the
solid relative to a determined frame of reference.

111.7.1 Concept of Frames and Reference Systems

To study the motion of a solid or a system composed of several solids, it is essential to locate the position
of each point as well as the kinematic vectors in space and time. In classical kinematics, we consider that

.
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space is three-dimensional Euclidean and time is absolute and independent of the observer. To locate the
solid, the observer defines:

« A spatial frame defined by an origin O and an orthonormal basis (X,,Y,,Z,) . The trihedron (O, X,,Y,, Z,)

completely defines the spatial frame in which the coordinates of all points of the solid can be expressed.
« A time frame (also called a time scale) with an origin and a time unit.

In the MKSA system, the unit of time is the second.

These two frames define a space-time frame called a reference frame or simply a frame in classical
kinematics. We then choose an arbitrary point Os on the solid. The position of this point is given at each

instant by the position vector@ expressed in the frame R (O, X,,Y,, Z,) . The coordinates of the point Os
depend on time and allow us to know at any moment the position of the frame R (O, X,,¥.,Z,) linked to
the solid. The transition from the frame R (O, X,,Y,,Z,) to the frame R (O,X,,y.,Z,) linked to the solid is
determined by the transition matrix, which expresses the unit vectors (O, X,,¥,,Z,) in terms of the unit
vectors (O, X,Y,Z,). This transition matrix is expressed in terms of Euler angles. The orientation of the
frame linked to the solid is independent of the choice of the point Os.

The set of translation and rotation parameters constitute the situation parameters or degrees of freedom of
the solid in space relative to the frame R (O,X,,Y,,Z,). If the number of parameters is equal to 6 (3

rotations and 3 translations), the solid is said to be completely free in R (O,X,,Y,,Z,) . If the number of

parameters is less than 6, the solid is said to be constrained or subjected to constraints where certain
parameters do not vary over time.

I11.7.2 Notation Systems
In the study of kinematics, we adopt the following notation:

Let Ri(O,X;,y,,Z;) be a frame linked to the observer and P a point of the solid:

. @ : Position vector of point P relative to frame R;;

e« VI(P)= dL : Speed of point P relative to frame R;;
dt

'V()

e 7'(P)= : Acceleration of point P relative to frame Ri.

The kinematic parameters are always linked to the frame. The kinematic parameters (velocity and
acceleration vectors) of the points of the solid are studied in a frame Ri (O, X,,y,, Z;) linked to the observer.

This frame is called the study frame.

The components of the velocityV'(P) and acceleration vectors#'(P) being measured and defined in the
frame Ri(O,X;,Y;,Z,), we can know their components in any frame of space Rp(O,X;,V5,Z5), which we
will call the projection frame.

Choosing this projection frame allows us to express the kinematic parameters with simpler mathematical
expressions. It is often interesting to choose the projection frame different from the study frame to

-
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simplify and reduce calculations. The projection frame being mobile relative to the study frame, care must
be taken during derivations as the unit vectors of the projection frame change direction and this must be
accounted for.

111.7.3 Motion of a Frame Rk Relative to a Frame R; Linked to the Observer

Let Ri(O,,X;,y,,Z;) be a frame linked to the observer and R«(O,,X,,Y,,Z,) a frame in any motion

relative to the first. Any point in space can be completely located in Rk and its components deduced in R;
or conversely by knowing the motion of R relative to Ri. The motion of the frame Rk is completely
known if:

e The position of its center Ok is completely known in R;;
o The orientation of the axes of Rk is known relative to those of R;.

111.7.3.1 Location of the Center Ok of the Frame Rk

The location of the center point Ok of the frame R is determined by the components of the vector 0,0,
linking the two centers of the frames in R; or Rk, which results in the following relations:

-

|

0,0, %, 0.0, X,
InR: {0,0,.y, In R: {0,0,.7,
0.0, ., 0.0, Z,

R; R

111.7.3.2 Formula for the Mobile Basis
Let Ri(O,,X,,Y;,Z;) be a fixed frame and R« (O, ,X,,Y,,Z,) a frame mobile relative to the first. The unit
vectors of the frame Rk are orthogonal to each other and have constant modules equal to 1, but they

change direction in space.

%] =[v.|=]z|=1and %.y, =0,%.Z, =0, ¥,.Z =0

) ) . . d'x, d'y, d'z
We will determine the derivatives of these vectors in the frame R;: 5 k. di/k dtk

Let Q) =6(aX, +by, +cZ, )be the rotation vector of the frame R (O,,%,,V,,Z,) relative to the frame
Ri(0,%.Y:,7).

We then have the following relations:

d'x, d'x o . d'x - ~ -
de 1 X, :d—;e(yk,zk); We can write: £ =0.%, +cy, —bZ,
d's,  d'% d'o [

X X _ - NS . =i _

dtk = d@k o :(0.xk+cyk—bzk)¢9:0t; A 8 =Q, A X,

.
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d'Ve o 4V o o . d'y G L0V a7
d¢9k 1y, = d49k e (%, Z,); We can write: —* =—c.X, +0Y, +azZ,
d'y, d'y, d'o [
y _d'y 0T 487 V) g 5 o
dtk = dek it =(—CcX, +0y, +aZ,)0=06/ b |A| 1 |=Q, A Y,
C 0
d'z, . d'Z, . Lod'z, o
dé’k 1z :d—;e(xk,yk); We can write: —* =hb.X, —ay, +0Z,
d'z, d'z d'o R
7 7 _ _ e ~
dtk = d@k it = (bX, —ay, +0.2,)0=6b [A| 0|=Q, AZ,
c 1
So we have: dd)t(k =Ql AR, a7y, =Q AV, %:QL/\ZK

111.7.3.3 Derivative in the Frame R; of a Vector Expressed in a Frame Rk

The vectorV (t) can be written as V (t) = X, X, +Y, V, +Z,Z, in the frame Ru.

-
Its derivative in the frame Ry is expressed as: d ;/t(t) =X X +Y,. ¥, +Z.7,

Its derivative in the frame R; is written as:

dV() d'v(t —_— . o
dt( ) = dt( ) + X Q. X +Y Q. Yy, +Z2,Q,7,

d‘\7(t) B dk\7(t)
dt dt

-
+ O AKX K +Y Y, +2,7, = d (\j/t(t) +Q AV()

) AV ()

V2 XV
Finally, we obtain: d \d/(t) _d ?:i/t(t) +Q

111.7.3.4 Properties of the Vector Q!

a) The vector Q) is antisymmetric with respect to indices i and j: Q) =-QF
b) Chasles' formula: Q) =Q} +Q/, (principle of composition)

iéi kﬁi ) ) ) ] ) )
C) a9, = d—k Equality of derivatives with respect to indices.
dt dt
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111.7.4 Transition Matrix (Type 1 Euler Angles)

Let Ri(O,,X,,Y;,Z;) be a fixed frame and Rk (O,,X,,¥,,Z,) a frame linked to the solid (S) in any motion

in space. The center Ok of the frame R belongs to the solid Oxe (S). In the case of type 1 Euler angles,
we consider that the centers O; and Ok of the two frames are coincident: Oi=0Ox, which means that the
frame Rk only undergoes rotations relative to the frame Ri. Three independent parameters are necessary to
completely define the orientation of the frame R relative to that of Ri.

The transition from frame Rk to frame R; is achieved by three rotations using two intermediate frames Ry
and Ro.

111.7.4.1 Transition from Frame R; to Frame R;: (the yaw rotation)
The rotation is performed around the axisZ, = Z, .

We transition from frame Ri(O,,X;,y;,Z;) to frame R:1(O,,X,,y,,Z,) by rotating by an angle y: called the
precession angle. The rotation speed is given by:

Q! = y7Z, =y7Z,Because 7, is confused with 7,

The representation is done by plane figures from which we construct ¥
the transition matrices. Thus, we have:

X

14
X, = CosyX; +sin yy, +0.Z, < %,
iT A
Y, =—sin yX; +cosyy; +0.Z, W=(,5) =(7,. 7)) Avee 4 =3, A,
Z,=0X +0.y, +Z

These three equations can be written in matrix form, and we obtain:

X, cosy siny 0)(X
Y, |[=|—siny cosy 0|V,
Z, 0 0 1){Z
cosy siny 0
Pk = —siny cosy 0 |This is the transition matrix from frame R; to frame R;.

0 0 1

The transition matrix from Rito Ry is equal to the transpose of the above matrix P

—>R; :PRi»Rl = PTRI‘)Ri .
111.7.4.2 Transition from Frame Rz to Frame R1: (the pitch rotation)

The rotation is performed around the axis X, = X,.

We transition from frame Rz (O,,X,,V,,Z,) to frame Ry (O,,X,,y,,Z,) by rotating by an angle 6: called the
nutation angle. The rotation speed is given by:

.
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ﬁlzzé}zlzézz

L

Q) = 6%, = &, Because X, is confused with X,

L
I

e
[

Thus, we have:

L J

[N
=

) +0.y, +0.Z,
, =0.X +cosé&y, +sin % =%

Xl —sin 6?1 + COS HZi €=(.7)=(3.5) Avec X; =y, A

<< X

Ly

)_{i
0
0.

N
I

-

1
In matrix form we get:

X, cosy siny O
Y, |[=|—siny cosy O |
Zl

N X

0 0 1

cosy siny 0
Py s =|—Siny cosy 0] This is the transition matrix from frame Rz to frame Ru
0 0 1

111.7.4.3 Transition from Frame Rk to Frame Rz: (the roll rotation)

The rotation is performed around the axisZ, = Z, .

-y
b

We transition from frame R to frame R by rotating by an angle
¢: called the proper rotation angle. The rotation speed is given

by:

=l
h=]

QO? = gi, = g7, Because Z,

is confused with Z;

Thus, we have: o " %,

X, = COS¢X, +sin ¢y, +0.Z, @=(%.%)=(.5;) Avec 5 =X; A J;
Y, =—Sin ¢X, +cos gy, +0.Z,
Z, =0X,+0.y,+Z,

In matrix form we get:

X, cosp sing 0)(X,
Y |[=|—sing cosp O} Y,
Z, 0 0 1)\z,

&
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cosp sing O
Pr or, =| —SiN@ cose 0| This is the transition matrix from frame R« to frame R>
0 0 1

The passage from the Rk reference to the R; reference or vice versa is done by three successive rotations
such that all the axes of Rk occupy positions different from that of R;. The transition matrix from Rk to R;
is given by the product of the three successive matrices, we obtain:

X, COS@COSy —Sin pcosdsiny  cosesin i +sin pcosdcosy  sin gsin 6 \( X,
Y |=| —sin @cosy —sinycos@cose —sin @sin i +Cospcos@dcosy  cosesin G || Y,
Z sin @sin —sin gcosy cosé Z,

The transition matrix from Ri to R is given by the transpose of the latter.

The instantaneous rotation vector of the reference frame Rk with respect to Ri will have the vector
expression:

Q =7, + K, + g,

It will have a different expression depending on whether it is written in one or the other of the two
markers.
@sin @sin y + O cosy
In Ri, we will have: Q)= {—¢sin Ocosy + Osin
- @CoSy +y
ysin @sin @ + 0cos g
In Rk, we will have: Q= {ysin @cosp—EGsin ¢
@+ CoSy

R

This instantaneous rotation vector allows deducing the speed of all the solid points by knowing the speed
of a single point belonging to the solid.

111.8 Fields of Velocity and Acceleration of a Solid

Consider a fixed reference frame Ri(O,,X;,y,,Z;)and a solid (Sx) linked to a moving reference frame
Rk (O, X,,Y,,Z,) in space. For any point on the solid (Sk), we can associate its position vector, thus its
velocity vector and acceleration vector.

Consider two points Ax and Bk belonging to the solid (Sk). We will seek a relationship between their
velocities and their accelerations.

.
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111.8.1 Velocity Fields

The solid (Sk) is non-deformable, so the distance A B, = Cte remains constant over time in both reference
frames. This vector will be expressed differently in Ri and Rx. The velocities of points Ak and Bk are
different because the solid has arbitrary motion.

Figure I11. 7: Velocity fields

In reference frame Ri: O,B, =O,A + AB, = A B, =0,B, —O,A =Cte

In reference frame R«: 0, B, = O, A, + A B, = AB, =0O,B, -0, A, =Cte

From these two expressions, we can deduce a relationship between the velocities of the two points
belonging to the solid.

The velocities of the two points with respect to the reference frame R;are given by:

d'0.B,

d'OA iy
(Ak)_— nd Vi(B)=—4

These two expressions can be written as:

- d'0,A, d O, p—
Vi(A)= thK thK +O8 AOA, oo, (1)
- d'oB, d“OB, ==, =——

ViB) == +O AOB, oo )

By subtracting the two expressions (2) - (1):

—_—

Vi) via) = Y OBCOA) Lo 6B O A)

We know that: d'(©, B*:jt_oiAK) _d '3‘;8" =0 because O,B, —O,A = A B,
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Thus, we obtain the distribution relationship of velocities in a solid: V' (B, ) =V' (A )+ A(AB,)

This relationship is of great importance in the kinematics and dynamics of solids. It allows us, from the
velocity of one point of the solid, to deduce the velocity of all other points of the solid by knowing the
rotational velocity of the associated reference frame.

Note:

a) If the rotation vector is zero Q| =0, then the solid is in pure translation motion, and all points of the
solid have the same velocity: V'(B,) =V'(A);

b) If VI(A)=0and V'(B,)=0, A(AB,), the solid is in pure rotational motion around the point
I

c) The general motion of a solid can be described as a composition of a translation motion of point
A €(S,) at velocity \7‘(Aﬂ) and a rotational motion around point A e (S, ) at rotational velocity Q, .

111.8.2 Equiprojectivity of the Velocity Field of a Solid

We can demonstrate it in two different methods.

a) Previously, we showed that: V'(B,) =V'(A) + < A (AB,)

_".‘l L

Figure 111.8 : Equiprojectivity of the velocity field
By multiplying this expression by the vector A B, , we obtain:
ABV'(B,) = ABV'(A)+AB.(Q AAB)
By circular permutation of the mixed product, we can easily see that the expression:

AB(Q, AAB,) =0, (AB, AAB)=0
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Thus, we obtain the equality: A B, V'(B,)=AB,V'(A)
(Property of Equiprojectivity of the Velocity Field of the Solid)

b) This expression can be found another way. The solid is non-deformable, and the distance A B, is
constant, thus:

d(AB) _,
dt

2 -

2A B, (V'(B,)-V'(A)) = 0 From where: AB,V'(B,)=AB,V'(A)

This equiprojectivity property implies the existence of a free vector Q! such that:

V(B,)=V'(A)+Q} A(AB,)which allows us to introduce the notion of kinematic screw.

111.8.3 Acceleration Fields
For each point of the solid (Sk) linked to the reference frame Ry, we deduce the acceleration from the

velocity using the relation: 7' (A ) = %
We will find a relationship linking the accelerations: 7'(A.) and 7'(B,).

We have already established a relationship between the velocities of the two points:
Vi(Bk) :\7I(Ak)+ﬁ:< A (AB)

We deduce the relationship between the accelerations by differentiating the expression of velocities.

dV'(B,) _dV'(A)  d'Q, NAB 2O A JAB,
dt dt dt ko

77i(Bk)= dt

d“AB, 5

i k .
And since: d '3‘;8“ _d ::B" +Q! A AB, =Q! AAB, because it

Finally, we obtain the relation between the accelerations of the two points Ax and Bk of the solid:

7B)=7 (A)+

KAAB +Ql A(QL AAB,)

We observe that if the rotational velocity is constantf){< =0, the expression becomes:

7'(B) =7 (A) + O A AAB) =7'(A)— AB, (C 2
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111.8.4 Kinematic Screw
The distribution formula of velocities is given by the relation: V'(B,)=V'(A )+Q} A(AB,)

The transport formula of moments between two points Ax and Bk of the solid is expressed as:
M(B,)=M(A)+RAAB,

We note that there is equivalence between these two equations. The velocity vector at point Bk is the
moment at point Bk of a screw, which we will denote as [C], , and the resultant is none other than the

instantaneous rotation vector Q3! .

The kinematic screw at point Bk (or the distribution screw of velocities) relative to the motion of the solid
with respect to R; has the reduced elements:

« Instantaneous rotation vector: Q!
« Velocity at point Bk: V'(B,)

It will be noted in the form : [C], ={#i " % R —
VI(B)=V'(A)+Q AAB,

The kinematic torso is of great interest because it completely characterizes the motion of a solid relative
to the Ri mark with regard to speeds. As the reduction elements of the kinematic torso are time functions,
and then the kinematic torso depends on it, so it has at every moment a different result and velocity field.

111.8.5 Instantaneous axis of rotation

The instantaneous axis of rotation is the central axis of the kinematic torso. We have shown previously
that the central axis is the set of points P such that the moment of the torso at this point is parallel to the
resultant. In the case of the kinematic torso, the set of these points constitutes the axis whose speeds are
parallel to the vector instantaneous speed of rotation.

At each instant the motion of the solid can be considered as being the composition of a rotational motion
of rotation speed Q! around the instantaneous axis and a translation whose instantaneous direction is

parallel to the rotation speed vectorsz.

Let a solid (S) be linked to a reference frame Rk in any motion relative to a reference frame R; and the
instantaneous rotation vector Q} of the solid relative to Ri.

We consider a point A € (S). Let (wr) be a normal plane i containing point A such that the rotation speed
of the solid is parallel to ni: fz'k=§z'k A . The velocity vector of point Ae (r) can be decomposed into two
vectors, one in the plane (m) and the other perpendicular to (w), which gives:

V(A) =V, (A)+V_ (A)with V,(A) € (z)etV, (A) L (7)

.



Chapter I11: Kinematics of the Rigid Body

Figure 111.9: Instantaneous axis of rotation

From what has been developed on the torsors, it is possible to find a P point such as: V,(A) = Q} APA
then the expression of the speed of point A will be written:

V(A) =V (A)+Q APA

Whatever Qe (n) we can write by the transport formula:

V(Q)=V(A)+Q AAQ=V (A)+O APA+Ql AAQ=V (A)+Q APQ
V(Q) =V, (A)+ O APQ

We can conclude that the velocity vector of the point Q € (=) is written:
V(Q=V,(Q+V,(Q

With V,(Q) = APQ and V,(Q) =V, (A)

It can be seen that the velocity component, normal to the plane (r) is the same for all points of the solid.
We finally get whatever P and Q:

V(Q) =V, (A) + Qi APQ

The motion of the solid in this case decomposes at each moment into a motion of translation in the plane
and a motion of rotation around an axis passing through the point P and parallel to the unitary vectorn.

The axis thus defined by the point P and the unit ﬁ//szconstitutes the instantaneous axis of rotation of
the solid with respect to the frame Ri.

We know that the central axis of a torso is the place of the points P where the moment is minimum or
zero. In the case of a kinematic torsor, the instantaneous speed is zero at all points of the central axis. We
deduce that if the speed is zero, in two distinct points of a solid, then the axis joining the two points is
necessarily an axis of rotation so a central axis of the kinematic torsor.

&
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111.9 Laws of Composition of motion
111.9.1 Law of Composition of Velocities

Consider Ri(O,,X;,y;,Z;) a fixed reference frame and R«(O,,X,.y,,Z,) a reference frame moving
arbitrarily with respect to the fixed frame. We consider a solid (Sk) whose motion is known in the relative
frame R« (O, , X, ,V,,Z,) -

Let P be a point on the solid. We can write at any moment:

O,P=00, +O.P

The velocity of point P in the frame R; is given by the derivative of the vector O—,I5 in the same frame.
WQP_wqq+dbﬁ
dt dt dt

Vi(P)=

Developing the two terms of velocity gives:

S —

d d;Ok =V'(0,): velocity of the center of the frame R with respect to the frame Ri.
in D kA p - S —
d ;kp _d'opP +O AOP=V¥(P)+Q AOP

Finally, the velocity of point P in the frame R; is written as: V' (P) =V ¥ (P) + (V' (O,) + €, AO,P)
This can also be written in the form: V'(P) =V*(P) +V'(Q,) +V, (P)
where:

V'(P): Absolute velocity of point P for an observer in R;

V¥(P): Relative velocity of point P with respect to Rk moving with respect to R;
\7ki (P): transport velocity of point P if it were stationary in Rx.

Note:

V! (P) = -V*(P): Antisymmetric with respect to the indices, and thus to the reference frames.

V, (P)=V/(P)+V/(P)
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111.9.2 Law of Composition of Accelerations

The absolute acceleration »'(P)of point P is derived from the absolute velocity:
i\7 i i\7 k i\7 i i A D

7i(P):dV (P):dv (P)+dV (Ok)+d (€, AOP
dt dt dt dt

Developing each of the three terms:

1.

dV'(P) _ dk\zkt(P) +OLAVE(P)=7*(P) + O AV (P) ;

dt
dV'(©,)
2. ——*=%'0,) ;
at 7' (Oy)
5 $@AOP)_d0 55 5 d'OFP
dt dt dt
i O P iQi 0P diQ “O,P
d (Qk /\OkP):d Qk /\Okp+éik/\d OkP:d Qk /\OkP+QL (d OkP QL/\OkP)
dt dt dt dt dt
e

AOP+Qi A(V¥(P)+Ql AO,P)

Summing the three terms gives:

7' (P)=74(P) + Y, A\7k(P)+7i<ok)=%Aﬁ+szA(\ik(p)m;—'Aokp)

—_—
1 1

7‘(P)=7k(P)+[7i(Ok)+d(%Aﬁ+éL A Q) Aﬁ)]uﬁ; AV*(P)

This expression can be written in a reduced form:

7'(P) = 7*(P)+7(P)+7.(P)

where:

7'(P): Absolute acceleration of point P (with respect to fixed Rj)

7%(P) : Relative acceleration of point P (with respect to frame Rx)

. . O .
7.(P)=7'(0,) + d m “AOP+Q, A(Q, AO,P): Transport acceleration of frame R

7.(P) = ZQL AV¥(P): Coriolis acceleration (complementary acceleration).
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The Coriolis acceleration is a composition between the rotational velocity Q! of the frame Ry with respect
to the frame R; and the relative velocityV*(P) of point P.

The Coriolis acceleration of point P is zero if and only if:

« The rotational velocity of the relative frame with respect to the absolute frame is zero: Q! =0;
« The relative velocity of point P is zero: V*(P)=0;
« The rotational velocity is collinear with the relative velocity: Q! //V*(P).

111.10 Fundamental Particular Motions
111.10.1 Pure Translation motion

A solid (Sk) linked to a frame Rk (O,, X, .Y, Z,)is said to be in pure translation motion with respect to a
frame Ri(O,,X;,y;,Z;) if the axes of Rk (O,, X,,Y,,Z,) maintain a fixed direction with respect to those of
Ri(O,,X;,y;,Z,) over time.

All points of the solid have the same velocity and the same acceleration as point P€ (S).
The rotational velocity of the solid is zero with respect to Ri.

We can write: V'(P) =V'(O,) and O} AO,P =0

Since O,P =0 ,then O} =0.
In this case, the velocity field is a uniform field.

The kinematic screw describing pure translation motion is a zero-couple screw with a resultant that is
zero but a non-zero moment.

Since all points of the solid have the same velocity at each moment, the points describe parallel
trajectories. Three types of trajectories can be described: Let P and Q be two points of the solid:

If the trajectories of the solid's points are rectilinear, it is called rectilinear translation. If their respective
velocities are constant over time, we have uniform rectilinear translation.

SR

Curvilinear translation trajectory: points P and Q have parallel and equal velocities.

.
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Circular translation trajectory: points P and Q describe circles of the same radius at the same velocity.

ab & 3 6 b

111.10.2 Pure Rotation motion around an Axis of the Solid
111.10.2.1 Velocity of a Point P on the Solid

A solid (Sk) linked to a frame Rk (O,,X,,Y,,Z,) is said to be in pure rotation motion with respect to a
frame Ri(O,,X;,Vy,,Z;) if an axis of Rx(O,, X,,Y,,Z,) remains fixed at all times and permanently in the
frame Ri(O,,X,,Y;,Z;). Thus, we have two distinct points Ok and | on the solid (Sk) that remain fixed in
the frame Ri (O,,X;,y,,Z;) during the rotation motion.

The frame R« (O, X,,Y,,Z,)Is in pure rotation with respect to the frame Ri(O,,X;,y,,Z;) at an angular

velocity given by: Q) =y.7, =7, et V'(Q,)=0

Let P be any point on the solid not belonging to the rotation axis such that: IP= rX,

eg Lep

Figure 111.10: Velocity of a Point P on the Solid
Whatever : | € Z et Z, We can write: V(1) =V'(0,) +Q} AO, I

Thus, we get: Q! /0,1 = O\ A0, I =0where V(1) =V'(0,) =0
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| and P are two points of the solid, we can then write:

VIP) =V (1)+O AP =0\ AIP=VI(P)=0l AIP

We replace QLand ﬁby their expressions, the speed of the point P
becomes:

=

=
-t

Vi(P):ﬁLAﬁ:ﬂkAr.ik:er A

In pure rotation motion, the velocity screw is equivalent to the sliding >

y
[l

L)

screw defined by: [C],,; = 20 ith e Z,and 7,
Vi()=0

111.10.2.2 Acceleration of a Point P on the Solid
We previously found the velocity of point P given by: V' (P) = Q! A IP
By deriving this expression, we get:

V! 'Q, o) -~ i_> i—) k—) - . — —_—
: th(P) -4 AIP+Qy A—ddip yet we have _ddItP =$+QL A IPsuch as IP =cst in the

y(P)=

d'1p

'ST=) —
1P _5 which give T:é:‘ AP

reference Rk then

Expanding this expression, we obtain: 7(P) = " AP+ QL A(C A TP)

But we have: Q) 1 IP= O!.IP =0et Q) O =i 2

Finally, the acceleration expression becomes:

7P)= _poz + T P
dt
where:
. —ﬁ.ﬁLz : Normal acceleration along the direction.
d'y,

AP Tangential acceleration at point P.

dt

o — Q - . . .
Replacing Q, =y.Z, , IP =rX, and dd—tk = y/Z, by their respective expressions:

7'(p)=—Ty2% + 1, =7,(P)+7,(P)

]
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Expressions of speed and acceleration can be easily expressed in the Ri(O

determining the matrix of passage from the R; frame to the R«: Py ¢ .
X, = CoSyX; +sin yy, +0.Z,

Y, =—sin yX. +cosyy, +0.Z,
z'k

=0X +0.y, +Z

cosy siny O
Where B, . =|-siny cosy O
0 0 1

Speed and acceleration will be expressed in R;:

V' (P) = ryy, =ryr(—sin yX, +COSYA, ) = —ry/sin yX, + I y7 COSYH,

7'(P) = ry2X, +ry#, =—ryr2(CosyX, +Sin yy., )+ ry(—sin wX, +cosyy,)
7'(P) = —r(y2cosy +y7sin y)X, + r(—yr2sin y + 7 cosy)y.

111.10.3 Helical motion (Rotation + Translation)

X.,Y,,Z;) frame by

A solid (Sk) linked to a frame Rk (O,,X,,Y,,Z,) describes helical motion with respect to a fixed frame

Ri (O,,X,y;,Z,)if:

An axis of the frame R«k(O,,X..Y,,Z,) remains coincident at all times with an axis of the frame

Ri(G;, %Y, 7).

The coordinate of point Ok, the center of the frame R«k(O,,X,Y,,Z,), along the coincident axis is

proportional to the rotation angle of frame R« (O,, X,Y,,Z,) with respect to the frame R;(O,,X;,,,Z;)

during the rotation motion.

Thus, we have: 0,0, = Ay (t)Z, = Ay (t)Z,

The scalar A represents the pitch of the helical motion along the coincident axis.

We have two superimposed motion:

Ny

« Atranslation motion along the common axis Z, =7, .

Ny

« Arrotation motion around the same axis Z, =7, .

-
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Application Exercises

Exercise 01:

A material point moves along a trajectory described by the following parametric equations:

Determine:

The unit tangent vector 7 to the trajectory;
The radius of curvature p;
The normal ii to the trajectory;

The binormalb .

P owodpE

Solution 01:

1. Unit Tangent Vector 7 to the Trajectory

The unit tangent vector 7 has the same direction and sense as the velocity vector 7 =

v, =1 7, =0
The velocity is writtenas: V=qv, =4t =V =i +4t jand y =1y, =4=y =4
v, =0 7. =0

And V| = \V§ +V] +VE =J1+16t2

Vo i+4j I SR

= = I+
V| Ji+16tz  J1+16t2 A6t

Thus: T7 =

2. Radius of Curvature p

In the Frenet frame, the acceleration of the material point is written as: y =y, +7,

Where 7, and y, are the tangential and normal accelerations, respectively.

v L
We know that: 7, = — Calculating 7, ,
Yo

Such as 7 —y—l32t(l+16t2)%fl—i and that 2 = 52 + 2
a2 Ceer T
16t2 16 16

We find: y2, =y2—y? =16- = =y =
AL 14162 1+16t2 ' Jiel6e

| <

<l

.
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3
_ vz 1416t (1+16t%)2
7N 4 4

v1+16t?

o,

3. Normal to the Trajectory n

Let s Dbe the arc length. The normal to the trajectory is given
dz _dr ds dz EE_BE-V_dS

g 22 % 4r _ -
d0 dsdo “ds Pdtds v dt at
- i _ 1 o 3 o
Since: i~ 2 4j(1+16t9)2 — (i +4))16(1+16t%) 2 | p4(-4i +))  (1-16t%)2 A(-4i + |
v 1+16t2 v 3 1 3
(1+16t2)2  4(1+16t2)2 (1+16t2)?2
S S S S
J1+16t2 1+16t2
4. Binormal

It is a unit vector perpendicular to both the tangent and normal vectors: b =7 A fi

1 — 4t
1+16t2 1+16t2 0 0
5|2 | al—L |-|o|:5=|0
1+16t2 1+16t2
0 0 1 1
Exercise 02:

Consider the mechanical system composed of a rod Oz of length L and a rectangular plate of dimensions
2a and 2b hinged at Oz with the rod (see figure). Ro being the fixed frame; R: rotating by ¥ around the

axis Z,. The plate rotates around the rod at an angular velocity ¢ .
Given: y=Cte; 0=Cte; ¢=Cte
Determine:

The transformation matrices from R1 to Rz and from Rz to Ry;
The instantaneous rotation vector of Rs relative to Ro expressed in Rz;

The velocity V°(0,) expressed in frame R by differentiation;
The velocity V°(A) with respect to Ro expressed in Rz by the solid's kinematics;
The acceleration expressed 7°(0,)in frame R, by differentiation and by the solid's kinematics.

ok~ wihe

by:
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Solution 02:
The rod: OO,=L; The plate: Length 2a, Width 2b

R,(O,X,,Y,,Z,) : Fixed frame;

R, (O, X, Y,,Z,): Frame rotating around the axis Z, relative to Ro;

R,(O,X,,V,,Z,) : Frame attached to the rod rotating around the axis y, relative to Ry;
R,(0,X;,¥,,Z;) : Frame attached to the plate rotating around the axis Z, relative to Ro;

Given: y=Cte; 0=Cte; ¢=Cte

1.Transformation Matrices IA 2
Transformation matrix from R» to Ri: o
X, cosd 0 sind\ X, 3
X, |= 0 1 0 v, o > X,
- . ~ 6
Xq —-sin@d 0 cosé | Z,

Ri—>R,

Transformation matrix from R3 to R»:

Xy cosp sing 0Y X,
X, |=|—sinx cose 0|V,
X, 0 0 1)7
R3—R,

2. Instantaneous Rotation Vector of Rz Relative to Ro Expressed in R>
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According to Chasles' theorem, we can write:
QA=+ +Q =p7, +0.Y, +y.Z,
Expressing the unit vector Z, in frame Rz, we get: Z, = —sin 6 X, +cos @ Z,
Q) =7, +0.Y, +y(—sin @ X, +c0s6 Z,) = —ysin @ X, + 0.y, + (¢ + v cos 0)Z,
—wsin @
Q= 0

y @+ ycosé

3. V°(0,) Velocity Expressed in Frame R; by Differentiation

0 2 .
By differentiation: V°(0,) = d ;)toz _d oto?_ +QJ A 00,
0 . —ysin @
AN d2002 A - A _ AL LAY oo 5 l//‘
00,= 0= m =0;and Q,=Q, +Q, =0y, +y.Z,= %
g, L g, w Ccosé
—ysing |0 Lo
V°(0,)= 0 A 0= J{Lysin@
Ry y Cos 6 . L -, 0

4. Velocity of Point A with Respect to Ro Expressed in Frame R;

By the solid's kinematics, we write: V°(A) =V°(0,) + Q% AO,A

a acosg
Point A is in frame Rs with coordinates: O,A= 0= Jasin ¢
R3 O Ry 0
L6 —ysin @ acos g
Where V°(A)= <Ly sin 6+ 0 A {asing
0 @ +ycosé 0

R, R, Ry

L& —asin ¢(¢ +y cosh)
VO(A)= <Ly sin @+ acosg(g+yrcosd)
—a(ysin Asin 6 + 6 cos )

Ry
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5. Acceleration by Differentiation and by the Solid's Kinematics in Frame R2R_2R?2

5.1. By Differentiation
We know: 0y = Cte; §=Cte; ¢ = Cte.

dV°(0,) _dV°(0,)

770(02): qt dt +Qg /\\70(02)
This gives:

0 —yrsin @ Lo — Lyr2sin @cos 6
7°(0,)= {LyBcosb+ 0 A {Lysino= 2LyOcosO

0 @+ cosé 0 —L&2— Ly2sin 20

R R

R, R

5.2. By the Solid's Kinematics

00

- _ d’Q, — = o
7°(0,) =7°(0) + dt2A002+QgA(93A002)

Points O and Ozbelong to the rod; their velocities and accelerations are zero in the frame R attached to
the rod:

7°(0) =0 Because the point O is fixed in the rod

. —yOcosd (0 0

d°Q) — .

dtZAoof 0 A 0= <LyOcosd
—yosin 6 g, L ‘, 0

R,
— Ly2sin @cosd

QI A(Q) A00,)= L6 cosd
—L62— Ly2sin 20

Ry

Summing these three expressions gives:

0 — Ly2sin @cosé — Ly2sin @cosé
7°(0,)= {Ly6Ocosbh+ Lyfcosd = 2L 6 cos O
g 0 ’, —L&2—Ly?sin 20 ", —L&2— Ly?sin 20
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Chapter I11: Kinematics of the Rigid Body
I11.1 Introduction
A rigid body is an idealization of a body that does not deform or change shape. Formally it is defined as a
collection of particles with the property that the distance between particles remains unchanged during the
course of motions of the body. Like the approximation of a rigid body as a particle, this is never strictly
true. All bodies deform as they move. However, the approximation remains acceptable as long as the
deformations are negligible relative to the overall motion of the body.
Kinematics of rigid bodies: relations between time and the positions, velocities, and accelerations of the
particles forming a rigid body.

I11.2 Fundamental Assumptions

To study the motion of a material point P, or more generally a system of particles or solids, an observer
must identify their position:

e Inspace;
e Intime.

In classical kinematics, it is assumed that:

e space is Euclidean (three-dimensional);
o Time is absolute (independent of the observer).

I11.3 Reference Frames

To fully study kinematic motion, the observer must define:

o aspatial reference frame linked to the observer with an origin O and an orthonormal basis (i ] ,E

) forming the trihedron (O,i , ] : E), which fully defines the spatial reference frame;
o atime reference (time scale) with an origin and a unit of measurement. In the MKSA system, the
second is the unit of time.
The spatial reference frame and the time reference together define the <space-time> reference frame

noted as (R). In this frame, at a given moment by the clock, the position of a point r (t) is defined by its
coordinates x (t), y (t), z (t) such that:

Or = x(0)i + y(t) j + z(t)k
The position of point P is known instantaneously in both space and time.

111.4 Motion Relative to Translating Axes

I11.4.1 Trajectory
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Let point M be identified in a fixed reference frame R (O,i ] K ). Its position is given at each instant t
by the vector (Figure 111.1):

r(t) =OM = x(t)i + y(t) j + z()K,

X(t)
The vector @ has components in the fixed reference frame at instant t. @ =:y(t)

2(t)

Figure 111.1: Trajectory of a point
The displacement of point M in space is given by the parametric equations of coordinates (X, y, z) as

functions of time. By eliminating the time parameter, we obtain the trajectory described by this point in
space.

@= M(t): position of point M in R (O,i,] ,E ) at instant t.

r(t + At) =M(t+At): position of point M in R (O,i ] ,E) at instant t+At.

The displacement vector from @to r(t + At) is given by A @ = r(t+At) - @ .

The positions occupied by point M in space describe a trajectory (I') with respect to the chosen reference
frame R (O,i, j,k ).
111.4.2 Velocity Vector

The material point moves from position M(t) to position M(t+At) during the time interval At at an average
speed:

T_W_F(htAt)—F(t) _Ar(t)
™At At At

The instantaneous velocity vector is obtained when: At —0, defined as:

V = lim V_ = fim 2r® _dr®
At—0 At—0 At At

This vector is always tangent to the trajectory and directed in the direction of motion.

=



Chapter I11: Kinematics of the Rigid Body

111.4.3 Acceleration Vector

The derivative of the velocity vector in the same reference frame R (O,i ] ,E ) gives the instantaneous
acceleration of point M:

— V({t+A) V() AV(t)
Im At At

The instantaneous acceleration is:

o . \/ (1) \/ 2r
i 5 VO _ VO _ 4
At—0 A—0 At At dt2

The two kinematic vectors help to understand the nature of the motion and to predict the different phases,
depending on whether the velocity vector is in the same or opposite direction to the acceleration vector.

I11.7 Kinematics of the Rigid Body

A perfect rigid body (S) is a set of material elements whose mutual distances do not vary over time.
Consequently, the velocities between these points are not independent. Hence, the kinematics of the rigid
body deals with the distribution of velocities of points within a body independently of the causes that
generated the motion of the solid.

The mechanics of solids allow us to study the behavior of solids and determine all the kinematic
parameters of all its points regardless of the nature of the motion. The transport formula allows, by
knowing the speed of a single point of the solid, to easily deduce the speed of all points of the solid. The
objective of the kinematics of the solid is to know the position, speed, and acceleration of all points of the
solid relative to a determined frame of reference.

111.7.1 Concept of Frames and Reference Systems

To study the motion of a solid or a system composed of several solids, it is essential to locate the position
of each point as well as the kinematic vectors in space and time. In classical kinematics, we consider that
space is three-dimensional Euclidean and time is absolute and independent of the observer. To locate the
solid, the observer defines:

« A spatial frame defined by an origin O and an orthonormal basis (X,.Y,,Z,) . The trihedron (O, X,,Y,.Z,)

completely defines the spatial frame in which the coordinates of all points of the solid can be expressed.
« A time frame (also called a time scale) with an origin and a time unit.

In the MKSA system, the unit of time is the second.

These two frames define a space-time frame called a reference frame or simply a frame in classical
kinematics. We then choose an arbitrary point Os on the solid. The position of this point is given at each

instant by the position vectorOT)S expressed in the frame R (O,X,,V,,Z,) . The coordinates of the point Os
depend on time and allow us to know at any moment the position of the frame R (O, X,,y,,Z,) linked to
the solid. The transition from the frame R (O, X,,¥,,Z,) to the frame R (O,X,,y.,Z,) linked to the solid is
determined by the transition matrix, which expresses the unit vectors (O,X,,¥,,Z,) in terms of the unit

s

.
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vectors (O, X, Y, Z,). This transition matrix is expressed in terms of Euler angles. The orientation of the
frame linked to the solid is independent of the choice of the point Os.

The set of translation and rotation parameters constitute the situation parameters or degrees of freedom of
the solid in space relative to the frame R (O,X,,Y,,Z,). If the number of parameters is equal to 6 (3

rotations and 3 translations), the solid is said to be completely free in R(O,X,,Y,,Z,). If the number of

parameters is less than 6, the solid is said to be constrained or subjected to constraints where certain
parameters do not vary over time.

111.7.2 Notation Systems
In the study of kinematics, we adopt the following notation:

Let Ri(O,X;,y,,Z;) be a frame linked to the observer and P a point of the solid:

. @ Position vector of point P relative to frame R;;

e« VI(P)= dﬂ - Speed of point P relative to frame R;;
dt

« 7 (P)= V—() - Acceleration of point P relative to frame R;.

The kinematic parameters are always linked to the frame. The kinematic parameters (velocity and
acceleration vectors) of the points of the solid are studied in a frame Ri (O, X,,y,, Z;) linked to the observer.

This frame is called the study frame.

The components of the velocityV'(P) and acceleration vectors 7' (P) being measured and defined in the
frame Ri (O, X;,Y;,Z,), we can know their components in any frame of space Ry (O,X;,Y5,Z,), which we
will call the projection frame.

Choosing this projection frame allows us to express the kinematic parameters with simpler mathematical
expressions. It is often interesting to choose the projection frame different from the study frame to
simplify and reduce calculations. The projection frame being mobile relative to the study frame, care must
be taken during derivations as the unit vectors of the projection frame change direction and this must be
accounted for.

111.7.3 Motion of a Frame Rk Relative to a Frame R; Linked to the Observer

Let Ri(O,,X;,y,,Z;) be a frame linked to the observer and Rx(O,,X,,Y,,Z,) a frame in any motion

relative to the first. Any point in space can be completely located in Rk and its components deduced in R;
or conversely by knowing the motion of R relative to Ri. The motion of the frame Rk is completely
known if:

o The position of its center Ok is completely known in R;;
o The orientation of the axes of Rk is known relative to those of Ri.

111.7.3.1 Location of the Center Ok of the Frame R

.
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The location of the center point Ok of the frame R is determined by the components of the vector 0,0,
linking the two centers of the frames in R; or Rk, which results in the following relations:

—_

|

0,0, % 0,0, X,
In R: <0,0,.y, In R: {0.0,.Y,
0,0, .7, 0,0,.Z,

R; Rk

111.7.3.2 Formula for the Mobile Basis
Let Ri(O,,X;,Y;,Z,) be a fixed frame and Rk (O,,X,.Y,,Z,) a frame mobile relative to the first. The unit
vectors of the frame Rk are orthogonal to each other and have constant modules equal to 1, but they
change direction in space.

1% =|I¥i]| =]z =1and %, =0,%.Z, =0, ¥,.Z, =0

So we have: d'%, =Q AK,; aY =0, AV a2,
dt dt dt

= QL ANZ,
111.7.3.3 Derivative in the Frame R; of a Vector Expressed in a Frame Rk

The vectorV (t) can be written as V (t) = X, X, +Y, , +Z,Z, in the frame Rx.

Its derivative in the frame Ry is expressed as: =X % +Y,. ¥, +Z.7,

d"V (1)
dt

Its derivative in the frame R; is written as:

dV() _d'v(t)

" " + X, QL% +Y, QL Y, +Z,Q17,

o
£ O A (X 4, Ty 42,7, =2 ;’t(t) + 8 AV (D)

dV(t) d'(t)
dt  d

Finally, we obtain: +Ql AV(t)

dV(t) d'V(t)
dt t

111.7.3.4 Properties of the Vector )}

a) The vector Q! is antisymmetric with respect to indices i and j: Q) =- Q¥

b) Chasles' formula: Q| =Q/ +Q', (principle of composition)

d'Q,  d“Q;

C
)dt

Equality of derivatives with respect to indices.
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111.7.4 Transition Matrix (Type 1 Euler Angles)

Let Ri(O,,X,,Y;,Z;) be a fixed frame and Rk (O,,X,,¥,,Z,) a frame linked to the solid (S) in any motion

in space. The center Ok of the frame R belongs to the solid Oxe (S). In the case of type 1 Euler angles,
we consider that the centers O; and Ok of the two frames are coincident: Oi=0Ox, which means that the
frame Rk only undergoes rotations relative to the frame Ri. Three independent parameters are necessary to
completely define the orientation of the frame R relative to that of Ri.

The transition from frame Rk to frame R; is achieved by three rotations using two intermediate frames Ry
and Ro.

111.7.4.1 Transition from Frame R; to Frame R;: (the yaw rotation)
The rotation is performed around the axis Z, = Z, .

We transition from frame Ri(O,,X;,y;,Z;) to frame R1(O,,X,,Y,,Z,) by rotating by an angle y: called the
precession angle. The rotation speed is given by:
Q! =7, =y, Because 7,

is confused with Z,

The representation is done by plane figures from which we construct 5
the transition matrices. Thus, we have:

X

v
X, = cosyX; +sin yy, +0.Z, e %,
=0
Y, ==SinyX; +cosyy; +0.7 W =) =3, 5) Avec 5, =5, ATy
Z,=0X,+0.y, +Z

These three equations can be written in matrix form, and we obtain:

X, cosy siny 0)(X
Y, |=| -siny cosy O}V,
Z, 0 0 1)z

cosy siny O
—siny cosy 0 |This is the transition matrix from frame R; to frame R..
0 0 1

I:)RﬁRi =

The transition matrix from Rito Ry is equal to the transpose of the above matrix P, - : PRi—>R1 =PT R, >R, -
111.7.4.2 Transition from Frame Rz to Frame Ri: (the pitch rotation)
The rotation is performed around the axis X, = X,.

We transition from frame Rz (0,,X,,Y,, Z,) to frame R1 (O, X,,¥,,Z,) by rotating by an angle 0: called the
nutation angle. The rotation speed is given by:

.
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le2:‘9)11=‘9)—('2

L

Q) = &, = &, Because %, is confused with X,

e
[

Thus, we have:

X, +0.y, +0.Z,
=0.X, + cos &, +sin ¢z, % =5
. =0.X —sin &, + CoS UL, B=(3.7,)=(3.5,) Avec %, =¥,

L J

[N
=

2
2

<< X

Ly

-

N,

In matrix form we get:

X, cosy siny O
V, |=| —-siny cosy O]
Zl

N X

0 0 1

cosy siny O
—siny cosy 0| This is the transition matrix from frame R to frame R
0 0 1

I:)RﬁRi =

I11.7.4.3 Transition from Frame Rk to Frame Rz: (the roll rotation)

The rotation is performed around the axisZ, = Z, .

-y
b

We transition from frame R to frame Rz by rotating by an angle
¢: called the proper rotation angle. The rotation speed is given

by:

=l
h=]

—

QF =gi, = ¢Z, Because Z; is confused withZ,

Thus, we have: . X

X, =CO0S¢X, +sin ¢y, +0.Z,
Y =—sin ¢X, +cos¢y, +0.Z,
Z, =0X,+0.y,+7Z,

In matrix form we get:

X, cosg sing 0)(X,
Vo |=| —sing cosep 0}V,
Z 0 0 10 Z

=~
N

)
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cosp sing O
PR, = —sing cose 0| This is the transition matrix from frame Ry to frame R
0 0 1

The passage from the Rk reference to the R; reference or vice versa is done by three successive rotations
such that all the axes of Rk occupy positions different from that of R;. The transition matrix from Rk to R;
is given by the product of the three successive matrices, we obtain:

X, COS@CoSy —sin pcosdsiny  cos@sin y +sin ¢cos@dcosy  sin gsin 8 \( X
Yo |=|—sin @¢cosy —sin ycos@cose —sin gsin y +CoS@CcosHcosy  cosesin 8 | Y,
Z sin @sin —sin &cosy cos & Z,

The transition matrix from Ri to R« is given by the transpose of the latter.

The instantaneous rotation vector of the reference frame Rk with respect to Ri will have the vector
expression:

QL =y, +6R1+§b72

It will have a different expression depending on whether it is written in one or the other of the two
markers.
@sin @sin y + O cosy
In Ri, we will have: Q= {—¢sin Ocosy + Osin
. @CoSy +y
y sin @sin ¢ + 0cos @
In Rk, we will have: Q= Jysin @cosp—EGsin ¢
@+ Ccosy

R

This instantaneous rotation vector allows deducing the speed of all the solid points by knowing the speed
of a single point belonging to the solid.

111.8 Fields of Velocity and Acceleration of a Solid

Consider a fixed reference frame Ri(O,,X;,y,,Z;)and a solid (Sx) linked to a moving reference frame Rx
(O, %,Y,,Z,) In space. For any point on the solid (Sk), we can associate its position vector, thus its
velocity vector and acceleration vector.

Consider two points Ax and Bk belonging to the solid (Sk). We will seek a relationship between their
velocities and their accelerations.

.
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The solid (Sk) is non-deformable, so the distance A B, = Cte remains constant over time in both reference
frames. This vector will be expressed differently in Ri and Rx. The velocities of points Ak and Bk are

different because the solid has arbitra

ry motion.

Figure I11. 7: Velocity fields

In reference frame Ri: O,B, = O, A, +

AB, = AB, =0B, —OA =Cte

In reference frame R«: 0, B, =O, A + AB, = AB, =0B, -O,A =Cte

From these two expressions, we can deduce a relationship between the velocities of the two points

belonging to the solid.

The velocities of the two points with respect to the reference frame R;are given by:

\7‘(Ak)=dio—‘AKand V'(B,) =

d'o,
dt d

These two expressions can be written

Bk

as:

d'0A_d'0A & 5

VI(A)= " " AOA ..o (1)
- d'0B, d“OB,  ~; ==
Vi(B,) = " K — " K+ QL AOB, oo ()

By subtracting the two expressions (2) - (1):

d'(0,B,
dt

V(B -V'(A)=

We know that: d' (OB ~OA)_d

A .6, 0B -0A)

|

B

k =0 because O,B, —O,A = A B,

dt

=P
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Thus, we obtain the distribution relationship of velocities in a solid: V' (B,)=V' (A )+Q A(AB,)

This relationship is of great importance in the kinematics and dynamics of solids. It allows us, from the
velocity of one point of the solid, to deduce the velocity of all other points of the solid by knowing the
rotational velocity of the associated reference frame.

Note:

a) If the rotation vector is zero Q, =0, then the solid is in pure translation motion, and all points of the
solid have the same velocity: V'(B,) =V'(A);

b) If VI(A)=0and V'(B,)= ~(AB,), the solid is in pure rotational motion around the point
A e(S);

c) The general motion of a solid can be described as a composition of a translation motion of point
A €(S,) at velocity Vi(ﬁ) and a rotational motion around point A < (S,) at rotational velocity Q2 .

111.8.2 Equiprojectivity of the Velocity Field of a Solid

We can demonstrate it in two different methods.

a) Previously, we showed that: V'(B,) =V'(A) + <} A (AB,)

=y

Figure 111.8 : Equiprojectivity of the velocity field
By multiplying this expression by the vector A B, , we obtain:
ABV'(B,) = AB,V'(A)+AB (4 AAB,)
By circular permutation of the mixed product, we can easily see that the expression:

AB (% AAB,)=QL.(AB AAB)=0
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Thus, we obtain the equality: A B, V'(B,)=AB,V'(A)
(Property of Equiprojectivity of the Velocity Field of the Solid)

b) This expression can be found another way. The solid is non-deformable, and the distance A B, is
constant, thus:

d(AB) _
dt

d(AB? __ae dAB, _
dt 2AB, dt =0

2A B, (V'(B,)-V'(A)) = 0 From where: A B,V'(B,)=AB,V'(A)

This equiprojectivity property implies the existence of a free vector fz'k such that:

V(B,)=V'(A)+Q! A(AB,)which allows us to introduce the notion of kinematic screw.

111.8.3 Acceleration Fields
For each point of the solid (Sk) linked to the reference frame Rk, we deduce the acceleration from the

velocity using the relation: 7'(A ) = W
We will find a relationship linking the accelerations: 7'(A,) and 7'(B,).

We have already established a relationship between the velocities of the two points:

ViB,)=V'(A)+ A(AB)

We deduce the relationship between the accelerations by differentiating the expression of velocities.

7'(By) = 4V'(8,) dV(Ak)+ko/\AKBk+QLAdAkBk

dt dt dt dt

i k . N v )
And since: dAB, _d AB, + Qi A AB, = Ol A AB, because d_AB, =0

dt dt

Finally, we obtain the relation between the accelerations of the two points Ax and Bk of the solid:

7 (B) =7 (A)+ Ik

AAB, +Q A(Q AAB,)
We observe that if the rotational velocity is constant fz'k =0, the expression becomes:

7'(B) =7 (A) + O A AAB) =7'(A)— AB, (C 2
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111.8.4 Kinematic Screw
The distribution formula of velocities is given by the relation: V'(B,)=V'(A )+Qi A(AB,)

The transport formula of moments between two points Ax and Bk of the solid is expressed as:
M(B,)=M(A)+RAAB,

We note that there is equivalence between these two equations. The velocity vector at point Bk is the
moment at point Bk of a screw, which we will denote as [C], , and the resultant is none other than the

instantaneous rotation vector (3, .

The kinematic screw at point Bk (or the distribution screw of velocities) relative to the motion of the solid
with respect to R; has the reduced elements:

« Instantaneous rotation vector: QL
« Velocity at point Bi: V'(B,)
Qi
It will be noted in the form:[C], =1 _ Lo L
© V(B =V (A)+ O AAB,

The kinematic torso is of great interest because it completely characterizes the motion of a solid relative
to the Ri mark with regard to speeds. As the reduction elements of the kinematic torso are time functions,
and then the kinematic torso depends on it, so it has at every moment a different result and velocity field.
111.9 Laws of Composition of motion

111.9.1 Law of Composition of Velocities

Consider Ri(O,;,X;,y;,Z;) a fixed reference frame and R«(O,,X,.y.,Z,) a reference frame moving

arbitrarily with respect to the fixed frame. We consider a solid (Sk) whose motion is known in the relative
frame R« (O, , X, ,V,,Z,) .

Let P be a point on the solid. We can write at any moment:

O,P=00, +O,P

The velocity of point P in the frame R; is given by the derivative of the vector @ in the same frame.
d'OP d'00, N d'o,P
dt dt dt

Vi(P)=

Developing the two terms of velocity gives:

d'0.0,

ot =V (0,) : velocity of the center of the frame Rk with respect to the frame R.

.
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d'oP _d*OP
dt dt

+Q A@:VK(P)+EZL /\O_k|5

Finally, the velocity of point P in the frame R; is written as: V' (P) =V *(P)+ (V' (O,) + QL AO,P)

This can also be written in the form: V'(P) =V*(P) +V'(Q,) +V/ (P)

where:

V'(P): Absolute velocity of point P for an observer in R;

V¥(P): Relative velocity of point P with respect to R« moving with respect to R;
V/! (P): transport velocity of point P if it were stationary in Rx.

Note:

\7ki (P)= —\7ik (P) : Antisymmetric with respect to the indices, and thus to the reference frames.

V, (P)=V/(P)+V/(P)

111.9.2 Law of Composition of Accelerations

The absolute acceleration y'(P)of point P is derived from the absolute
dV'(P) _dV*(P)  dV'(0,)  d'(%AOFP
dt dt dt dt

7'(P) =

Developing each of the three terms:

dV'(P) d'V*(P)
dt dt

1.

+Ql AVE(P) =75 (P)+ Q) AV*(P) ;

dV'(o,)
dt

2. 7'(0,) ;

S —

d'0,P
dt

d'(@ AOP) _d'®,

AOP+Q A
dt dt

3.

velocity:
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il .M D ii - inN D ii - kA D
d'(@, AOP) _d'Qy /\OkP+QL/\d okpdekAOkaLA(d O,P
dt dt dt dt dt
40!
dt

+Q, AO,P)

AOP+QL A(V¥(P)+Ql AO,P)

Summing the three terms gives:

=i = A \T =i d'Q. =% & 7 AN O D
7'(P)=7" (P +Q AVH(P)+7'(0) == H AOP+ Q4 AV (P) + 4 AO,P)

7‘(P)=7K(P)+[7i(ok)+d£k AOP +QL A(Q A@)]ug‘z; AV (P)

This expression can be written in a reduced form:
7'(P)=7"(P)+7(P)+7.(P)

where:

7'(P): Absolute acceleration of point P (with respect to fixed Rj)

7*(P) : Relative acceleration of point P (with respect to frame R)

7. (P)=7'(0,) + dd?k AOP +Q A(Q AO,P): Transport acceleration of frame R«

7.(P) = ZQL AV¥(P): Coriolis acceleration (complementary acceleration).

The Coriolis acceleration is a composition between the rotational velocity QL of the frame Rk with respect

to the frame Ri and the relative velocityV* (P) of point P.
The Coriolis acceleration of point P is zero if and only if:

e The rotational velocity of the relative frame with respect to the absolute frame is zero: QL =0;
« The relative velocity of point P is zero: V*(P)=0;
e The rotational velocity is collinear with the relative velocity: QL//W (P).

Application Exercises

Exercise 01:

Consider the mechanical system composed of a rod O of length L and a rectangular plate of dimensions
2a and 2b hinged at Oz with the rod (see figure). Ro being the fixed frame; R rotating by ¥ around the

axis Z,. The plate rotates around the rod at an angular velocity ¢ .
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Given: y=Cte; 0=Cte; ¢=Cte

Determine:

1. The transformation matrices from Ry to R> and from Rz to Ry;

2. The instantaneous rotation vector of Rs relative to Ro expressed in Ry;

3. The velocity V°(0,)expressed in frame R, by differentiation;

4. The velocity V°(A) with respect to Ro expressed in Rz by the solid's kinematics;

5. The acceleration expressed 7°(O,)in frame R; by differentiation and by the solid's kinematics.

Solution 01:

The rod: OO,=L; The plate: Length 2a, Width 2b

R, (0,X,,Y,.Z,) : Fixed frame; SIA 2

R.(O,X,,V,,Z): Frame rotating around the axis Z, relative to Ro;

)

R,(0,X,,Y,,Z,): Frame attached to the rod rotating around the axis y,
relative to Ry;

R,(0,X;,Y;,Z;) : Frame attached to the plate rotating around the axis Z,
relative to Ro;

Given: y=Cte; 0=Cte; ¢=Cte
1.Transformation Matrices

Transformation matrix from R» to R1:

X, cosd 0 siné)\ X,
X, = 0 1 0 |V,
X, —sin@ 0 cosé ) Z,

&
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Transformation matrix from Rs to Ra:

X, cosp sing 0YX,
X, |=|—sink cosg OV,
X, 0 0 1)7

R3—R,
2. Instantaneous Rotation Vector of Rz Relative to Ro Expressed in R2

According to Chasles' theorem, we can write:

A=+ Q0+ =7, +0, +y .2,

Expressing the unit vector Z in frame Rz, we get: Z, = —sin X, +cosé Z,

Q) =7, +0.Y, +y(—sin @ X, +cosO Z,) = —ysin O X, + 0., + (¢ + 7 cos ) Z,
- z/)s.in 0

Q%= 0
@+ cosl

R,

3. V°(0,) Velocity Expressed in Frame R by Differentiation

d°00, _d*00,

By differentiation: V°(0,) = +Q% A 00,
dt dt
0 d?00
00,= 0= 2-0; and
dt
R, L
—ysin @
Q=0 +QY =0y, +y.7,= 0
. Lweoso
—yrsin 0 Lo
V°(0,)= 0 A 0= J{Lysineo
s w cosé N L ", 0

4. Velocity of Point A with Respect to Ro Expressed in Frame R»
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By the solid's kinematics, we write: V°(A) =V °(0,) + Q% AO,A

a acos¢g
Point A is in frame Rz with coordinates: O,A= 0= <asin ¢
Ra O R, 0
Lo —ysin @ acosg
Where V°(A)= { Ly sin 6+ 0 A dasing
0 @ +ycosé 0

R, Ry Ry

L& —asin ¢(¢ +y cosh)
VO(A)= {Lysin @+ acosg(gp+yrcosd)
—a(ysin Asin 6 + 6 cos )

R,
5. Acceleration by Differentiation and by the Solid's Kinematics in Frame R2R_2R2
5.1. By Differentiation

We know: 8y = Cte ; 0= Cte; ¢ = Cte.

dV°(0,) _dV°(0,)

70(02): at dt +Qg /\\70(02)
This gives:

0 —ysin @ Lo — Ly2sin Ocos O
7°(0,)= {LyOcoso+ 0 A {Lysino= 2LyOcosO

0 @+ coso 0 —L&2— Ly2sin 20

Ry Ry

R, R

5.2. By the Solid's Kinematics

4°0)

7°(0,)=7°(0) + A 00, + Q5 A () A00,)

Points O and Ozbelong to the rod; their velocities and accelerations are zero in the frame Rz attached to
the rod:

7°(0) = 0 Because the point O is fixed in the rod
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. —yOcosd (0 0

d°Q) — .
2700, = 0 A 0= {Lybcosd

—yOsind _ |L 0

R,

R,

—Ly2sin cosé
Q% A (Q% A00,)= Ly6cosd
—LO2— Ly2sin 20

2

Summing these three expressions gives:

0 — Ly?sin 6cosé — Ly2sin cosé
7°(0,)= {LyOcosH+ LyOcosd = 2Ly6cosh
0 —L62—Ly2sin20 (- L2 Ly2sin 20

RZ RZ 2




Chapter V
Dynamics of Rigid
Solids



Chapter V: Dynamics of the Rigid Body

Chapter V: Dynamics of the Rigid Body
V.1 Introduction

Dynamics allows us to analyze the links between the movements described by kinematics and
the forces or actions that cause them. It examines the concept of force and, more broadly, the
concept of efforts exerted on any material system.

The purpose of this chapter is to state the fundamental principle of dynamics and its influence
on the study of motion. We will also introduce the concept of the wrench of external forces,
which is necessary for writing the fundamental principle of dynamics.

V.2 Expression of the Fundamental Law of Dynamics

Consider a material system (S) that is not isolated, subjected to interactions in a Galilean
reference frame R, (O, X,, ¥,, Z,) . For such a system, two types of actions are identified:

- Internal Mechanical Actions:
These are the result of one part of (S) acting on another part of (S). These forces are called

internal forces and are denoted as dF. .

- External Mechanical Actions:

These stem from the interaction of the rest of the universe (the external environment) with
(S). These forces are called external forces and are denoted as dlfe.

The proper classification of forces as internal or external depends on appropriately selecting
the boundary conditions of the system.

At any arbitrary point M within the system (S), the fundamental relationship of dynamics is
expressed as:

dF, +dF, = 7(M)dm
dm: represents the infinitesimal mass element at M;
7(M) :is the acceleration vector at M.

Summing over the entire material system gives:

[dF, +[dF, = [#(M)dm

S
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e

Figure V.1: Mechanical Actions

At any point A in space, the moments of these forces are given by:

[AP AdF, + [ AP A dF, = [ AP A 7(M)dm
S S S

We assume that the material system (S) does not exchange matter with other systems and that
its total mass is constant.

The external mechanical actions acting on (S) are represented by the torsor [t]rexva , Called the
external forces wrench, whose components at point A are:

E
[T]FextA = { - &

M Aext

F...: The resultant of the external forces acting on the system (S);

ext *
M Ao - the moment at point A of the external forces acting on the system (S).

The fundamental principle of dynamics shows that in any Galilean reference frame, the
dynamic wrench [D]a of system (S) is equal to the external forces wrench [t]rexva Calculated
at the same point A.

The components of the dynamic wrench [D]a of system (S) in the Galilean reference

frame R, (O, %,, ,.Z,) are: [D], = {;
A

D : The dynamic resultant;

5, : The dynamic moment at point A.

The equality of the two wrenches implies the equality of their components. This principle
generalizes Newton’s laws. The components of the two wrenches can be calculated
separately, and the obtained expressions are then equated.

Point A, with respect to which the moments are calculated, is arbitrary, but its selection
should facilitate the writing of equations. Often in mechanics problems, the center of mass of
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the system is chosen because the moment of inertia involved in the calculations is easier to
determine.

V.2.1 Theorem of Dynamic Resultant

Consider a material system (S) in motion in a Galilean reference frame R,(O,X,,Y,,Z,)and

subjected to external actions. The dynamic resultant of the material system (S) is equal to the
resultant of the external mechanical actions (forces).

D(S/R,) =my(G/Ry) = > Fyq

G: the center of mass of the system. The resultant of the external forces is equal to the mass of
the system times the acceleration of its center of mass.

V.2.2 Theorem of Dynamic Moment

Consider a material system (S) in motion in a Galilean reference frame R, (O, X,, ¥,,Z,) and

subjected to external actions. The dynamic moment of the material system (S) at any point A
is equal to the moment of the external mechanical actions (forces) at the same point A.

SA(S/RO) = MA(S/RO)
At the center of mass of the system, this equality can be written as:

4. (S/R,)

86 (S/R)) =M (S/R;) ===

As previously demonstrated, the angular momentum at point G, the center of mass of the
system, is independent of the reference frame in which it is measured. Therefore, it is often
simpler to calculate the dynamic moments at the center of mass of the systems.

Remark:

The dynamic moment of a composite system is equal to the sum of the dynamic moments of
its components with respect to the same point.

V.2.3 Scalar Equations Derived from the Fundamental Principle

The vector equations of the dynamic resultant and dynamic moment each lead to three scalar
equations, giving a total of six scalar equations for a given material system.

The choice of the reference point for expressing the equation of the dynamic resultant and the
point where the dynamic moment is calculated must be judicious to simplify the mathematical
writing of scalar equations.

These scalar equations are second-order differential equations and are generally nonlinear.
They include the system's inertia characteristics, geometric data, and the components of the
mechanical actions applied to the system.
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V.3 Principle of Action and Reaction

Two arbitrary points A and B in a material system (S) interact, mutually influencing each
other through actions and reactions (Fig. V.2):

—

Fars : Action of A on B.

—

|:E”A: Action of B on A.
These two actions balance each other. The principle of action and reaction is expressed as:

FA/B + FB/A =0

This equation implies that the forces are collinear along the line joining the two points A and
Fus = AAB

B, such that: and F,,, = ABA

F,+Fs .=1AB+1BA=A(AB-AB)=0

(S)

Figure V.2: Action and Reaction
V.3.1 Theorem of Action and Reaction

Consider two material systems (S1) and (S2) moving in a Galilean reference frame Ro.
Let (S) be the system formed by the union of the two systems: (S) = (S1) U (S2).

The Toeror of the external forces acting on (S) is decomposed as:
[7]¢ex, - Resultant of the external actions of the environment on S.
[7],,: Resultant of the actions of Sz on Ss.

The torsor of the external forces acting on S; is decomposed as:

[7]rex, - Resultant of the external actions of the environment on S.

[7],,: Resultant of the actions of S1 on Sa.
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F

Figure V.3: Resultant of actions

Applying the fundamental principle of dynamics in the Galilean reference frame Ro to the
different systems:

- A(Sy): [D]l = [T]Fextl + [7]12
- A(S): [D]z :[T]Fext2 + [7]12
- A(S): [D] = [T]Fextl + [T]Fextz

Knowing that: [D]=[D], +[D],
The expression represents the theorem of action and reaction.
[T]Fextl + [T]Fextz = [T]Fextl + [7]21 + [T]Fext2 + [T]lz g [7]21 + [7]12 = [O]C> [7]21 = _[T]lz

This expression reflects the theorem of action and reaction. For the material system (S), the
relation: [r],, +[r],, =[0] characterizes the internal actions.

In general, when all the internal mechanical actions within a material system (S) can be
represented by a wrench [t]intF, it is always zero.

V.3.2 Properties of Internal Forces

The torsor of internal forces has the following components: [z]; ;.. :{
Aint

ﬁint :Z('Eij + 'Eji) =0
i=1

Action-Reaction Forces: Ifij =-F;

Moment of Internal Forces: At any point A in space, the moment of internal forces is given
by:

Mo =2 (AM; AR, + AM; AF;) =D (AM; AF; +(AM; + M;M ) A F})
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MAint :Z(AMi /\(Ifij + IEji)"‘(lvlilvlj)/\ 'Eji):6

Because (F;+F;)=0et (M;M,)AF,; =0
The torsor of internal forces is always a null wrench: [t]rint =0

V.4 Kinetic Energy Theorem

In many cases, determining the equation of motion for a rigid body or a system of rigid bodies
is easier using the Kinetic energy theorem, which helps simplify the solution to mechanical
problems.

Furthermore, the derivative of Kkinetic energy is related to the power of both internal and
external forces acting on the body.

V.4.1 Work and Power of a Force

Consider a discrete system composed of n particles M; of mass m;, moving in a Galilean
reference frame R(X, y,Z). Let OM, be the position vector of the particle M in the reference
frame R. Its velocity vector is:

V(M.):M:dOM. =V (M,)dt
| dt | I

dOT/Ii : represent the infinitesimal displacement during a time dt.
If the particle M; is subjected to a force F , the infinitesimal work done by this force is:
dW, = F,.dOM,

The power received by the particle is :

. LEV(M.
ot dt (M)

—

Note that F, includes both internal forces F,,, and external forces F,,:

iint

—

F =F, +F, ; Forthe entire system, the total power is:

i iint

W :Zlfi 'dWZZ(ﬁiint + ﬁien)-dm

P:Zﬁiv(Mi):Z(ﬁiim + 'Eiext)v(Mi)
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V.4.2 Kinetic Energy Theorem

For a system of n particles M; with mass m; and velocity \7(|\/|i), moving in a Galilean
reference frame R(X, y, Z), the kinetic energy is:

Eczgémi(V(Mi))z

The time derivative of this expression is:

dE, & V(M,) -
dt =2 dt VM)

i=1

dvV(M,) dE

The force acting on particle Mi: F, =m,
dt dt 43

Since F, includes both internal and external forces, this can be written as:

d:tc = Pint + Pext

Pint : power from internal forces;
Pext : power from external forces.

The power of the internal and external forces equals the time derivative of Kinetic energy.
Integrating this expression between two instants t; and t;, the kinetic energy theorem
becomes:

t
E.(t;)— Eo(t,) = [ (P + P )t
&

Ec (tz) - Ec (tl) :Wint _Wext

The variation in Kinetic energy between two instants t: and t equals the work of all internal
and external forces applied to the system.

V.4.3 Kinetic Energy of a Rigid Body

For a rigid body, the Kinetic energy is given by:

1¢e-
EC=§!V2(M)dm

Let R,(O,X,,Y,,Z,) be a fixed orthonormal frame and R, (O, X;,Y,,Z;) a frame attached to
the rigid body (S), moving in any manner such that O, €(S)
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Let Q2 be the angular velocity of frame R; relative to frame Rz, and M an arbitrary point of
the solid. According to the kinematics of the solid, we write:

V(M) =VY(M)+Q° AOM
The Kinetic energy of the solid (S) in motion relative to a fixed frame Ry is expressed as:

——f om). Y-(M)y (M)m=j\7°(M).7°(M)dm

dE0

_j(v (0,) + Q% AO,M).7°(M)dm

Using the permutation rule in the scalar triple product, the expression of Vent:

dE;?
dt

=V °(0, )j *(M)dm+Q?.[O,M A 7°(M)dm

Which can also be written in the form of the product of two torsor:

j7°(|v|)dm

dE; | Q) !
dt  |V°(0,)|[O,M A7°(M)dm

=lcs,JIbs ]

The derivative of kinetic energy is equal to the product of the kinematic and dynamic
wrenches, and thus is equal to the power of the absolute acceleration quantities.

As we saw earlier, according to the fundamental theorem of dynamics, the dynamic wrench is
equal to the wrench of external forces for a rigid body, hence the final expression:

dE
dt — Dext

C

V.4.4 Conservation of Total Energy
The Kinetic energy theorem can be written as:
dE, =P, dt=dW,,

ext

If all external forces derive from a potential function U(r), independent of time, then:
F,. =—gradU(r) From this, we deduce:

dw,, =F,,.dF =—dU(r)

The kinetic energy theorem becomes:

100
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dE; =-dU(r) =d(Ec +U)=0 and finely E; + U =Cte
Ec+ U=E, E : total energy

This expression represents the total energy conservation theorem:

101
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Application Exercises

Exercise 1

A system consists of two masses M and M’ connected by an inextensible cable that passes
over a pulley of radius R. The mass M’ is suspended vertically, and the mass M slides without
friction on an inclined plane at an angle a\alphaa. The friction of the cable on the pulley is
negligible. Write:

1.

The relation between the pulley's angular velocity Q and the acceleration 7 of the two
bodies.

The fundamental principle of dynamics and determine the system's acceleration in two
cases:

a) The pulley's mass is negligible.

b) The pulley's mass is m.

Exercise 2

A homogeneous bar of length AB=L, mass m, and center G, has one end A resting on a
smooth horizontal surface, and the other end B sliding along a vertical wall. Initially, the bar
makes an angle 6o with the wall. Both ends slide without friction.

1.

Using the theorems of dynamic resultant and dynamic moment, establish the three
scalar equations of the bar's motion.

Deduce the angular acceleration & from these equations.

Show, by integrating the acceleration equation, that: 62 = 3Tg (cos @, —cosb)

Re-derive the above expressiond? using the total mechanical energy conservation
theorem.

Determine Ra and Rg (the reactions at A and B) as functions of 6.

102
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6. Find the angle at which the bar detaches from the wall.
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