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FOREWORD 

This manual is a basic course in Physics 4, titled Rational Mechanics. It is part of the core 

curriculum for the 3rd semester of the common foundational program in the sciences and 

engineering field. It is intended for second-year undergraduate students (LMD system). This 

document adheres to the syllabus of Rational Mechanics for the fields of Civil Engineering, 

Mechanical Engineering, Public Works, Aeronautics, and Hydraulics, as taught at the Faculty 

of Technologies of Djillali Liabes University in Sidi Bel Abbès. It is written in the form of 

detailed lectures with solved applications. The content is organized into five chapters. 

The first chapter serves as a mathematical review aimed at providing students with the 

foundational knowledge required for understanding the course. It includes operations on 

vectors, moments, and torsors. 

The second chapter addresses the statics of rigid bodies. It introduces fundamental concepts 

in statics, such as material points, perfect rigid bodies, forces, moments, wrenches, the 

equilibrium of force systems, constraints, reactions, operations on forces, and the equilibrium 

of solids in the presence of friction. 

The third chapter presents the kinematics of rigid bodies, focusing on mechanical motion 

from a purely geometric perspective, without considering the causes of the motion. 

The fourth chapter deals with concepts related to mass, the center of mass, moments of 

inertia, and products of inertia, highlighting their mechanical significance in the study of 

kinetics and dynamics. 

The fifth and final chapter of this document focuses on the fundamental principle of the 

dynamics of material systems. The primary objective of this chapter is to study the general 

theorems governing dynamics. 

 

Dr LIAMANI Samira 

 



Introduction  

Rational mechanics is a fundamental branch of classical physics that deals with the laws of 

motion and the equilibrium of bodies. It relies on rigorous mathematical principles and 

applies fundamental mechanical concepts such as force, motion, mass, and energy to various 

physical systems. 

Its primary goal is to analyze and predict the behavior of material systems based on the 

interactions they experience, whether gravitational, elastic, or due to external forces. The 

discipline traces its origins to the works of great scientists such as Isaac Newton, with his 

famous laws of motion, and Joseph-Louis Lagrange, who developed an analytical 

reformulation using the calculus of variations. 

Rational mechanics plays a central role in scientific education, as it fosters analytical skills 

and rigor in modeling physical phenomena. It also serves as a conceptual bridge to more 

advanced theories such as analytical mechanics and fluid mechanics. 

In summary, rational mechanics is a cornerstone of science, enabling the explanation and 

prediction of natural phenomena with remarkable precision while laying the groundwork for 

modern scientific and technological advancements. 
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Chapter I: Mathematical Tools 

I.1 Introduction 

The modeling of real space, considered within the framework of classical mechanics as being 

three-dimensional, homogeneous and isotropic, supposes the introduction of mathematical 

tools such as vectors, and notions about torsos. 

In this part we will present the reminders and all the mathematical operations on vectors. We 

will also develop the study on torsos which are very important mathematical tools in classical 

mechanics, particularly in solid mechanics. The use of torsors in mechanics makes it possible 

to simplify the writing of equations relating to the fundamental quantities of mechanics. 

I.2 Definition of a vector 

Some quantities cannot be described by real or scalar numbers because it is necessary to 

specify their intensity, their direction and their sense. This pushes us to use vectors to 

represent them. 

We call vector ( AB ) a line segment having an origin (A) 

and an endpoint (B) and defined by: 

His origin (A); 

Its direction (the right (Δ)); 

Its sense (from point A to point B); 

Its length or magnitude (the distance AB).          Figure I.1: Graphical presentation of a vector 

Vectors are commonly represented by arrows. 

I.2.1 Types of vectors 

The vector can be represented in several types:  

 A vector is said to be linked if its point of application is fixed (fixed 

vector). 

Example: The position of the vector is completely defined on the support right 

(C). 

 A vector is said to be free if its point of application and its direction are 

unknown and its other components are known. (free vector) 

Example: The vectors AB ,CD  and EF  are representatives of the same vectorV . 

 A vector is said to be sliding if its point of application is not fixed. (sliding vector) 

Example: Vectors AB , CD are representatives of the same vectorV . 
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 A vector is said to be unitary if its module is equal to 1. 

I.2.2 Vector calculation 

I.2.2.1 Equal vectors 

Two vectors AB and CD  are considered equal if they have the same 

length, the same direction and the same sense. 

This equality makes ABDC a parallelogram. 

I.2.2.2 Addition of vectors 

Given two vectors 
1V and 

2V with Ɐ 1V  , 2V ∈ R3 the sum of these vectors is a vector 

3V ∈ R3 

The sum of these two vectors is carried out by transporting the origins of the two vectors to a 

single point A in order to construct a parallelogram whose sides are 
1V and 

2V . The 

resulting vector 3V is defined by: 3V = 
1V +

2V . 

If (a1, a2, a3) and (b1, b2, b3) are the components of the vectors 
1V and 

2V respectively: 

kajaiav 3211   ; kbjbibv 3212   

The sum of the two vectors:  

3V  = 
1V  + 

2V = kbajbaiba )()()( 332211   

  

Figure I.2: Parallelogram law 

From the construction of the parallelogram, we can deduce another graphical method for the 

addition of vectors. This method is known as the triangle law. We will only be able to draw 

half of the parallelogram. In order to add two vectors, we think of them as displacements. We 

carry out the first displacement, and then the second. So the second displacement must start 

where the first one finishes. 
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Figure I.3: Triangle law 

One of the things we can do with vectors is to add them together. We shall start by adding two 

vectors together. Once we have done that, we can add any number of vectors together by 

adding the first two, then adding the result to the third, and so on. This way of proceeding 

graphically translates the polygon law. 

 

Figure I.4: Polygon law 

On the other hand, the summation of the vectors is: 

 Commutative: we can add vectors in any order we want say that vector addition is: 

1V  + 
2V =   

2V + 
1V  

 Associative: 
1V  + (

2V + 3V ) =   (
2V +

1V ) + 3V  

 Distributive compared with the vector sum λ(
1V  +

2V ) =λ 
1V  +λ 

2V   

 Distributive compared with the scalar sum: V  (λ1 + λ2) =λ1V  + λ2V  

 Identity Element for Vector Addition: There is a unique vector, 0 ,that acts as an 

identity element for vector addition. For all vectors 1V :
1V + 0 = 1V  

 Inverse Element for Vector Addition: For every vector V , there is a unique inverse 

vector VV


 such that V + (-V ) = 0  

I.2.2.3 Subtraction of vectors 

Subtraction of two vectors 
1V  - 

2V is the vector V defined as the addition of the vector 

1V to a vector '2V equal and opposite to
2V . 
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Figure I.5: Subtraction of two vectors 

I.2.2.4 Scalar Multiplication of Vectors 

Vectors can be multiplied by real positive numbers. Let x be a real number and a 
1V vector, 

then the multiplication of 
1V  by x is a new vector

2V : 

If the vector 
1V has components (a1, a2, a3) such as kajaiav 3211   

The vector 
2V would be written: kxajxaixav 3212  z 

Scalar multiplication of vectors satisfies the following properties: 

a) Associative Law for Scalar Multiplication: λ1 (λ2V ) = λ1λ2V . 

b) Distributive Law for Vector Addition: λ(
1V  +

2V ) =λ 
1V  +λ 

2V  ;  

c) Distributive Law for Scalar Addition-: (λ 1 + λ 2) V = λ 1V + λ 2 V  ; 

d) Identity Element for Scalar Multiplication: The number 1 acts as an identity element 

for multiplication, 1.V =V . 

I.2.2.5 Modules of a vector (Standard) 

Let the vector kzjyixv   

The Pythagorean Theorem is used to calculate the modulus or length of the vector, Such as: 

222 zyxV   

Application example 

Let A (2, 5) and B (-3, 1) be two points and AB  a vector. 

Determine the coordinates and modulus of the vector AB . 
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The vector module: 
22 )4()5( AB so 45AB  

I.2.3 Decomposition of vectors 

We have shown so far that it is always possible to replace two or more vectors by a single 

vector. Conversely, it is always possible to replace a single vector V  by two or more vectors. 

These vectors are called the components of the original vectorV . We must consider two cases 

of particular interest: 

1. One of the components 
1V  is fixed. We calculate the second component using the triangle 

law. 

2. The two directions of decomposition are given. The magnitude and orientation of the 

components are obtained by applying the parallelogram principle. 

I.2.4The vectors Product  

There are two kinds of multiplication involving vectors. The first is known as the scalar 

product. The second product is known as the vector product. 

I.2.4.1 Scalar product of two vectors 

Let there be two vectors 
1V  and 

2V  their scalar product is a product which gives as result a 

scalar, (Fig. I.6):   cos.. 2121 VVVV   

 

Figure I.6: Scalar product 

Such that θ is the angle between the two vectors. The angle θ is always chosen to lie between 

0 and π, and the tails of the two vectors must coincide. 

The scalar product of two vectors is: 

 Commutative: 
1V . 

2V =   
2V . 

1V  ; 

 Associative with respect to the multiplication of a scalar: λ(
1V .

2V ) =
1V . (λ.

2V ) ; 
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 Distributive compared with vector sum: 3121321 ...)(. VVVVVVV   ; 

 Generally, whenever any two vectors are perpendicular to each other their scalar 

product is zero because the angle between the vectors is 90◦ and cos90◦ = 0: 

0. 2121  VVVV  

Analytical expression 

The scalar product can be defined by the analytical expression:  
21.VV =a1b1+a2b2+a3b3 

Example 

zyxV 1231   ; zyxV 7142   

21.VV = )71()12()43(   ; 
21.VV =7 

I.2.4.2 Vector product of two vectors 

The vector product is a vector operation carried out in oriented Euclidean spaces of dimension 

3, this operation does not exist in 2 dimensions. 

Consider two vectors 
1V and 

2V with   Ɐ 
2V , 

1V  ∈ R3 

The vector product of these two vectors is a vector 3V ∈ R3 such that: 3V is a vector 

perpendicular to 
1V and 

2V  

 

Figure I.7: Vector product 

nVVVVV .sin. 21321   

n  is a unit vector perpendicular to the plane containing a by 
1V and 

2V  in the sense defined 

by the right-handed screw rule; 

• The modulus of the vector product is equal to the area of the parallelogram formed by 
1V  

and
2V ;  
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• The vector product is distributive on the left and right for the vector sum: 

  3231321 VVVVVVV   

  2313213 VVVVVVV   

• The vector product is associative for multiplication by a real number: 

λ.
1V  ˄

2V  = λ ( 
1V ˄ 

2V ) 

1V  ˄ λ 
2V  = λ ( 

1V ˄ 
2V ) 

• The vector product is antisymmetric (anticommutative) 

1V  ˄
2V = - 

2V ˄ 
1V  

If we apply this property to the vector product of the same vector, we will have: 

1V  ˄ 
1V = -(

1V  ˄ 
1V ) = 0  

• We deduce from this property that the vector product is null if: 

- The two vectors are collinear; 

- One of the vectors is null. 

1V  // 
1V  so 

1V  ˄ 
1V  = 0  

Analytical Expression 

The vector product can be calculated by the direct method in Cartesian coordinates in a direct 

orthonormal coordinate system: 

zyxV  1
 

zyxV  2  

1V  ˄
2V = ( zyx   )˄( zyx   ) 

1V  ˄
2V = zyx )()()(    

It can also be determined by the determinant method: 
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1V  ˄
2V = zyx

zyx















   

1V  ˄
2V = zyx )()()(    

Application example 

zyxV 1231   

zyxV 7142   

1V  ˄
2V = zyx

zyx

14

23

74

13

71

12

714

123 





  

1V  ˄
2V = zyx )83()421()114(   

1V  ˄
2V = zyx 52515   

I.2.4.3 The mixed product 

We call the mixed product of three vectors 321, VandVV taken in this order, the real number 

defined by: ).( 321 VVV   

The absolute value of the mixed product is the volume of the parallelepiped formed by the 3 

vectors. 

The mixed product is null if: 

- The three vectors are in the same plane; 

- Two of the vectors are collinear; 

- One of the vectors is null. 

It is easily shown that, in a direct orthonormal basis, the mixed product is a scalar variant by 

direct circular permutation of the three vectors because the scalar product is commutative: 

).().().( 312213321 VVVVVVVVV   
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Figure I.8: Mixed product of three vectors 

I.2.4.4 The sine rule in a triangle 

Study the triangle ABC, we can establish a relationship between the three sides and the three 

angles of the triangle.  

In the triangles ABD and CBD, we have: 

AB

DB
sin   , and 

BC

DB
sin  from where 

AB sinα = BC sin β, we deduce: 
 sinsin

ABBC
  

 

Figure I.9: Rule of sinus in a triangle 

Likewise for the triangles AEC and BEC: 

We have: 
AC

EC
sin  , and 

BC

EC
 )sin(   

From where AC sinα = BC sin (π − θ) = BC sin θ 

We deduce: 
 sinsin

ACBC
  

We finally deduce a relationship called the sine rule in a triangle: 

 sinsinsin

ACABBC
  
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1.2.5 Projection of vectors 

I.2.5.1 Orthogonal projection of a vector on an axis 

Let be any vector, and an axis (Δ) defined by its unit vectoru . 

The orthogonal projection of the vector V on the axis (Δ) defined by the component xV of this 

vector on this axis. 

xV =( uuV ).  

 

Figure I.10: Orthogonal projection of a vector onto an axis 

I.2.5.2 Orthogonal projection of a vector onto a plane 

GivenV , an arbitrary vector, its projection onto the plane (π) defined by the normal n  is the 

component V in the plane. 

 

Figure I.11: Orthogonal projection of a vector onto an axis 

We can write the projection of V on the plane by the following relation: V =V - 
n

V  

Whence V = V ( n . n ) And 
n

V = (V . n ) n  

So: V = V ( n . n )- (V . n ) n  

And we find the vector expression of the vector V  by the following double vector relation: 

V = n ˄ (V ˄ n ) 
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I.2.6 Operators and vectors 

I.2.6.1 Gradient operator in an orthonormal frame R (O, kji ,, ) 

We define the vector operator noted: k
z

j
y

i
x 












  as being the derivative in 

space along the three directions of the unit vectors. 

The gradient of a scalar U is defined as being the vector derivative following the three 

respective directions kji ,,  with respect to the variables: x, y, z. 

k
z

U
j

y

U
i

x

U
zyxgradU














),,(  Or UgradU 


 

Example 

U= 3xy-2zx+5yz 

x

U




=3y-2z, 

y

U




=3x+5z, 

z

U




=-2x+5y 

kyxjzxizyzyxgradU )52()53()23(),,(   

The gradient of a scalar is a vector. 

I.2.6.2 Divergence operator in an orthonormal reference frame R (O, kji ,, ) 

The divergence of a vector V is defined as the scalar product of the operator: 

k
z

j
y

i
x

V













  by the vector ; VVrot   

 kVjViVk
z

j
y

i
x

Vrot zyx 





















  

The rotational of a vector is also a vector. 

In matrix form we will have: 




















































































y

V

x

V
x

V

z

V

z

V

y

V

V

V

V

z

y

x

Vrot

xy

zx

yz

z

y

x

)(  
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I.3The Moments (Torque) 

A moment represents a vector physical quantity reflecting the ability of this force to turn a 

mechanical system. 

Moments are vectors, and like any vector, they are defined by four parameters that define all 

vectors: sense, direction, intensity and point of application. 

The direction of the moment is determined in accordance with the trigonometric direction 

(also called geometric direction). 

• The positive trigonometric direction corresponds counterclockwise; 

• The negative trigonometric direction corresponds clockwise. 

I.3.1 Moment of a vector relative to a point 

The moment 
AM of a vector V of origin B (sliding or fixed) with respect to a point A is equal 

to the cross product of the position vector AB with the vector V  (Fig. I.12 (a)) 

It is written: 
AM (V ) = AB ˄V  

The triad formed respectively by the vectors ( AB ,V ,
AM  ) is direct. 

 

(a)                                                                   (b) 

Figure I.12: Moment of a vector with respect to a point 

Example  
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Noticed: 

The moment at point A is independent of the position of the vector V  on the axis (Δ). Indeed, 

we have (Fig. I.12 (b)): 

AM (V ) = AC ˄V =  )( BCAB ˄V  

But we have:  BC  // V  BC  ˄ V = 0  so 
AM (V ) = AB ˄V  

The moment 
AM (V ) is perpendicular to the plane formed by the vectors AB andV . 

Distance AB is often called to as the lever arm. 

I.3.2 Moment of a vector with respect to an axis 

The moment 
M (V ) of a vector V with respect to an axis (Δ) defined by a point A and a unit 

vectoru , is equal to the projection of the moment 
AM (V ) on the axis (Δ). 

M (V ) = (
AM (V ).u ) u  

 

Figure I.13: Moment of a vector with respect to an axis 

Example 

For each case illustrated in the figure, determine the moment of the force about point O 
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Solution: 

Fig (a)    MO =(100 N)(2m) = 200 N.m             Fig (b)    MO = (50 N)(0.75 m) = 37.5 N.m  

Fig (c)    MO =(40 lb)(4 ft+2cos30 ft) = 299 lb.ft  

Fig (d)     MO =(60 lb)( 1sin45 ft) = 42.4 lb.ft     Fig (e)     MO =(7 kN)(4m−1m)=21 kN.m    

I.4The Torsors 

Tensors are mathematical tools widely used in mechanics. The use of tensors in the study of 

complex mechanical systems is very convenient because it simplifies the writing of vector 

equations. A vector equation represents three scalar equations, and a tensor equation is 

equivalent to two vector equations, thus to six scalar equations. There are four different types 

of tensors: the kinematic tensor, the kinetic tensor, the dynamic tensor, and the action tensor. 

I.4.1 Definition of a Torsor 

A tensor, which we will denote as [T], is defined as a set of two vector fields defined in the 

geometric space and having the following properties: 

a) The first vector field associates with every point A in space a vector independent of point 

A, called the resultant of the tensor [T]. 

b) The second vector field associates with every point A in space a vector that depends on 

point A. This vector is called the moment at point A of the tensor [T]. 

I.4.2 Rating 

The resultant R  and the resultant moment 
AM  at point A constitute the reduction elements of 

the torso at point A. 

Let R  be the resultant of the n sliding vectors: nVVVV ..........,, 321 applied respectively to the 

points: B1, B2, B3……Bn. We can define two quantities from this system of vectors: 

 The resultant of the n vectors: 



n

i

iVR
1

; 

 The resulting moment at a point A in space is given by: 



n

i

iiA VABM
1

. 

The two quantities constitute the torsor developed at point A associated with the given vector 

system. We adopt the following notation:  








A

A
M

R
T  

Note: A torsor is not equal to a vector pair, but it is represented at point A by its reduction 

elements. 
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I.4.3 Operation on the torsors 

Be the torsos [T1] and [T2] such as  








1

1
1

M

R
T  and  









2

2
2

M

R
T and λ a scalar 

I.4.3.1 Sum of two torsors 

The sum of two torsors [T1] and [T2] is a torsor [T] whose reduction elements R  and 
AM  

are respectively the sum of the reduction elements of the two torsors. 

[T]A = [T1]A + [T2]A  ⇔ [T]A =










21

21

MMM

RRR
 

I.4.3.2 Multiplication of a torsor by a scalar 

The multiplication of a torsor by a scalar is given by the following expression: 

λ  








1

1
1

.

.

M

R
T




 with λ ∈ R 

I.4.3.3 Equality of two torsors 

Two torsors are equal (equivalent), if and only if there exists a point in space at which the 

reduction elements are respectively equal to each other. Let two torsors [T1] and [T2] be such 

that: [T1]A = [T2]A equal to point A, this equality results in two vector equalities: 

[T1]A = [T2]A  ⇔ 










AA MM

RR

21

21  

I.4.3.4 Product of two torsors 

We call the product of the two torsors [T]1 and [T]2 the real defined by: 

ϕ A = [T]1  [T]2 = 
AMR 21.  +

AMR 12 .  

I.4.3.5 Null torsors 

The zero torsors denoted [0] is the neutral element for the addition of two torsors. Its 

reduction elements are zero at any point in space. 

[0]  ⇔ 










0

0

AM

R
 Ɐ A ∈ R3 
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I.5 Properties of moment vectors 

I.5.1 Moments transport formula 

Knowing the Torsor  

















i

iiA

i

i

A
VABM

VR

T  at a point A in space we can determine the 

reduction elements of this same torsor at another point C in space. 

The moment at point C is expressed as a function of the moment at point A, the resultant R  

and the vectorCA . We have in fact: 





n

i

ii

n

i

ii

n

i

ii

n

i

ii

n

i

iii

n

i

iiC VABVCAVABVCAVABCAVCBM
111111

)(  

AC MRCAM   So RCAMM AC   

This very important relationship in mechanics makes it possible to determine the moment at a 

point C by knowing the moment at point A. 

I.5.2 Equiprojectivity of moment vectors 

The moment vectors 
AM  at point A and CM  at point C have the same projection on the line 

AC: 

We say that the field of moment vectors is equiprojective. 

RCAMM AC   

 

Figure I.14: Equiprojectivity of moment vectors 

Projecting the moment vector onto the CA axis amounts to making the scalar product with the 

vector CA  up to a multiplicative factor. We have the transport formula: 

RCAMM AC   

Let us multiply this relation scalarly by the vector CA  
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).(.)(. RCACAMCARCAMCAMCA AAC   

Or RCA is a vector perpendicular to CA  then: 0).(  RCACA  

We finally obtain: 

AC MCAMCA ..   or ... CAMCAM AC  The scalar product is commutative. 

This expression expresses only the projections of the moment vectors  CM   and 
AM  on the 

right CA are equal. 

I.6 Type of Torsors 

I.6.1Torsor Couple 

We call a couple, a torso whose result is zero. The moment of a couple is a torso invariant and 

therefore the scalar and vector invariants are null too. 

 











0

0

A

A
M

R
T  

Properties of the moment vector 

The moment of a torsor couple is independent of the points of the space where it is measured. 

We have: V1=V2 such as: 
1221 0 VVVVR   

The moment at any point A of the space is given by: 

1121 VAQVAPVAQVAPM A   

111 VQPVAQVAPM A   

 

Figure I.15: Torsor Couple 

It is clear that the moment at point A is independent of A. We will show that it is also 

independent of points P and Q. 
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Indeed we have: 
111 )( VHPVHPQHVQPM A   

H is the orthogonal projection of the point P on the right support of the vector
2V  . 

In reality the moment of a torsor couple depends only on the distance that separates the two 

supporting lines from the two vectors, it is independent of the place where it is measured. 

Decomposition of a torsor couple 

Let [T] a torso couple defined by:  








A

C
M

T
0

. This torso couple can be broken down into 

two sliders [T]1 and [T]2 such that: [T]C = [T1] +[T2]  where both sliders are defined as 

follows:  











PP

A
MMM

RR
T

21

21 0
 where P is any point 

The invariants of the two sliders are null: I1= 0. 11 RM P  ; I2= 0. 22 RM P  

There is an infinite solution equivalent to a torso couple.  

The problem is solved as follows:  

a) Select a slider [T1] by: 

- The result of the slider: 1R ; 

- The axis (Δ1) of the slider, defined by a point P1 such as: (Δ1)= (P1, 1R ) 

b) The slider [T2] is then defined as: 

- Its resultant
2R =- 

1R ; 

- Its axis (Δ2) is easily determined because it is parallel to (Δ1); it is then enough to know a 

point P2 of this axis. Point P is determined by the following relationship: MPPR  211  

This relationship uniquely determines the position of the point. 

I.6.2 Sliding Torsor 

We call slider any torso of non-zero result which admits a point P for which its moment is 

null. 
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This definition can be translated as:[ T] is a slider ⇔












0

0.

R

RM P

 ∀ P 

We know that the scalar invariant is independent of the point P where it is calculated. As the 

result is not null then we can say that: a torso is a slider, if and only if, there is at least one 

point in which the moment of the torso is zero. 

Moment at a point of a slider 

Let [T] be a given slider. There is at least one point where the slider moment is zero. 

At this point we can write: 0AM , 

By the transport formula the moment at any point P is written: 

APRMM AP   

APRM P   

This relation expresses the moment vector at any point P of a slider whose moment is zero at 

point A. 

Axe of a slider 

Let [T] be a given slider and A any point such as: 0AM , 

Let’s look at all the P points for which the torso moment is zero: 

If 0PM  ⇔ 0 APR  ; 

This relationship shows that vector AP  is collinear to the resultant R . 

The set of points P is determined by the line passing through the point A and unit vector 

parallel to the resultant R . 

This line is called the zero moment axis of the slider or slider axis. It represents the center 

axis of the slider.  

A non-zero resultant torsor is a slider, if and only if, its scalar invariant is null. 

I.6.3 Any torso 

A torsor is any, if and only if, its scalar invariant is not null. 

[T] is any torso⇔ RM P . ≠0  
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Decomposition of any torso 

Any torsor [T] can be decomposed infinitely into the sum of a sliding torsor [T1] and a couple 

torsor [T2]. 

We proceed as follows: 

a) Select point P 

Choose a point P where the torso reduction elements [T] are known:  








P

A
M

R
T  

The choice of point P will depend on the problem to be solved; we choose the easiest point to 

determine. Once the choice is made, the decomposition of any torso is unique. 

b) Slider Construction [T1] 

- The result equal to the result of any torso: 
1R = R , with its axis passing through the point P 

already chosen; 

- The moment is zero on this axis: 01 PM  

The slider [T] will have for reduction elements:  











01

1
1

PM

RR
T  

c) Couple Torso Construction [T2] 

- The result is zero: 
2R = 0  ,  

- Couple torso moment is equal to any torso moment: 
PP MM 2

 

The slider [T] will have for reduction elements:  











PP MM

R
T

2

2
2

0
 

We thus obtain [T] = [T1 ]+[T2] 

At each point initially chosen we can make this construction. All sliders obtained will have 

the same result. They differ in their axes but keep the same direction because they are all 

parallel to the axis carrying the resultant of any torso. 
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Application exercises 

Exercise 01:  

Two points A and B, have for Cartesian coordinates in space: A (2, 3, -3), B (5, 7, 2) 

Determine the components of the vector AB as well as its module, its direction and its 

direction. 

Corrected 01: 

Vector AB  is given by: kjiOAOBAB 543    

His module: AB = 50²5²4²3     

His direction: is determined by the angles (α, β, θ) it makes with each of the reference axes. 

These angles are deduced by the scalar product of vector AB  by the unit vectors of the 

orthonormed reference frame: 

α = ),( iAB : iAB. = AB.1 cos α ⇔ cos α = 
50

3

1.

.


AB

iAB
 = 0.424 ⇒ α = 64.89° 

β = ),( jAB  : jAB.  = AB.1 cos β  ⇔ cos β = 
50

4

1.

.


AB

jAB
= 0.565 ⇒ β = 55.54°  

θ = ),( kAB : kAB.  = AB.1 cos θ ⇔ cos θ = 
50

5

1.

.


AB

kAB
= 0.707 ⇒ θ = 44.99° 

His sense: as the scalar product of vector AB  with the three unit vectors is positive then, it 

has a positive sense following the three axes of the mark. 

Exercise 02: 

Be the vectors
1V ,

2V , 3V  and 
4V  such as: 

kiV 41  , kzjyiV  22 , kjiV 423  , kjyiV 244   

1) Determine y and z for vectors 
1V and 2V  to be collinear,  

2) Determine y for vectors 3V and 4V  to be perpendicular, 

Corrected 02: 

1. 1V  and 2V  are collinear: 0 = 2V  ˄ 1V  ࢂ
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1V ˄ 
2V = 


































































































8

0

0

0

0

8

4

0

0

02

4

0

1

z

y

y

z

y

z

y  

2. 3V  and 
4V  are perpendicular: 3V . 

4V =0 

3V  . 
4V = 4- 2y +8 = 0 ⇔ y= 6 

Exercise 03: 

Let two torsors [T1]A and [T2]A be defined at the same point A by their reduction elements in 

an orthonormal coordinate system: R (O, kji ,, ) : 

 











kjiM

kjiR
T

A

A
74

223

1

1
1    and  












kjiM

kjiR
T

A

A
74

223

2

2
2  

1) Determine the central axis and the pitch of the torso [T1]A; 

2) Determine the self-moment of the torso [T1]A, show that it is independent of point A; 

3) Construct the torsor [T]A= a[T1]A +b[T2]A with a and b ∈ R; 

4) What relation must a and b verify for the torsor [T]A to be a couple torsor; 

5) Show that the couple torsor is independent of the point where it is measured; 

6) Determine the simplest system of sliding vectors associated with the sum torsor: 

[T1]A +[T2]A. 

Corrected 03: 

1) Centerline and Torso Pitch [T1]A 

Centerline: It is defined by the set of P points such as: 
12

1

11 R
R

MR
OP A 


  
























































































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2) Self Torso Moment [T1]A : 28)74).(223(. 11  kjikjiMR A
 

The auto moment is independent of point A. Indeed, according to the transport formula we 

can write: ).(.. 11111 RABRMRMRRABMM BABA   

BA MRMR .. 11  , it is clearly independent of point A 

3) [T]A= a[T1]A +b[T2]A ⇔  







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4) Condition for [T]A to be a torque torsor: the result must be zero: 

0R ⇒ a=b 

The time in this case will be equal to: iaibaM A 8)(41   

5) The moment of a couple torsor where the resultant 
1R and 

2R have the same module but 

opposite directions and applied to points A and B is written: 

211

11

121

)(

)(

RHARHARHAM

RHABHRBAM

ROBROAROBROAM

A

A

A







 

The moment of a couple is independent of the distance between points A and B, it depends 

only on the distance which separates the two support lines of the resultants. This distance is 

called the lever arm. 

6) Simple system of sliding vectors associated with the torso sum: [T1]A +[T2]A. 

The torso sum [T]A is given by:  











iM

R
T

A

A
8

0
 

The resultant can be decomposed into any two vectors of the 

same module and opposite direction, one of which is placed at 

point A, we then obtain: 

iVABVABVAAM A 5)()(   

System of two sliding vectors: (A, V ) and (B, -V ), such as 

V . AM =0 
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Chapter II: Solid Statics 

II.1 Introduction 

Statics represents the field of rational mechanics that deals with the study of the equilibrium of 

mechanical systems considered at rest relative to the reference frame in which the observer is located. The 

mechanical system studied can represent any association of solid or fluid physical bodies, a point or a set 

of material points, a part, or the whole of a solid. 

In this chapter, we address concepts related to material points, perfect solid bodies, force, the moment of a 

force, and external force torsors. We then provide the conditions for static equilibrium and the different 

types of connections and reactions. Finally, we explain some operations on forces concerning the 

reduction of a system of forces to a resultant and the decomposition of a force into several components. 

We will see that static problems can be solved using graphical methods, analytical methods, or a 

combination of both methods. 

II.2 Fundamental Concepts of Statics 

II.2.1 Material Point 

A material point is defined as a material particle that possesses mass and negligible dimensions under the 

conditions of the considered problem. The difference compared to the geometric point lies in the fact that 

the material point is assumed to contain a certain amount of concentrated matter. 

II.2.2 Perfect Solid Body 

A perfect solid body represents a theoretical model of the real solid, with natural and technological reality 

being more complex. A perfect solid body is made up of a set of material points that act on each other 

according to the principle of action and reaction equality and maintain the same distances between them 

under all circumstances, regardless of the applied external force systems. Therefore, a perfect solid body 

does not undergo any deformation. 

II.2.3 Force 

A force represents any interaction of one body on another. In mechanics, forces are used to model various 

mechanical actions (pressure, friction, contact actions, electrostatic force, electromagnetic force, etc.). 

A force is represented by a force vector with the general properties of vectors: a point of application (A), 

a direction (or line of action) (Δ), a sense (from A to B), and a magnitude AB . 

 

Figure II.1: Vector representation of a force 
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We can separate the action of a force on a body into two effects, external and internal: 

 External forces can be either applied forces or reaction forces.  

 Internal forces are resultants of stresses caused by external forces.  

The unit of force is the Newton, which corresponds to the force that imparts an acceleration of 1 meter 

per second squared to a body with a mass of 1 kilogram. 

II.2.4 Force Systems 

A force system is defined as the set of forces iF  that act simultaneously on a material point or on a solid. 

 

Figure II.2: Force System 

Force systems are classified into three categories: 

1. Reaction forces: If a solid body exerts a force on another body, the second body exerts an equal and 

opposite force on the first body. 

 

Figure II.3: Reaction Forces 

2. Friction forces: Friction force exists when two real solids are in contact. Friction force always opposes 

the direction of movement. 

 
Figure II.4: Friction Forces 
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3. Tension forces: A force that pulls on an element of a body, such as the tension exerted by a string or 

spring. 

 

Figure II.5: Tension Forces 

II.2.5 Operations on Force (Composition, Decomposition, Projection) 

II.2.5.1 Geometric Decomposition of a Force 

Consider a force F  applied at the origin O of an orthonormal coordinate system. The components of this 

force are defined by:  

kFjFiFFFFF zyxzyx   

Such as Fx =F.cosθx, Fy =F.cosθy, Fz =F.cosθz 

With: F2= F²x+F²y+F²z  

  

Figure II.6: Geometric decomposition of a force 

The angles θx, θy, and θz are the three angles defined by the projection of the force on the three axes OX, 

OY, and OZ respectively. 

 

Figure II.7: Euler angles 
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The magnitude of the force can be expressed using cosines direction: 
zyx

FFF

 coscoscos
  

II.2.5.2 Resultant of Two Concurrent Forces 

Given two forces 
1F and 

2F applied at a point O of the solid, the resultant R  can be determined from the 

parallelogram formed by these two forces (Figure).  

The magnitude and direction of the resultant R  are determined by the diagonal of the parallelogram 

constructed on these two forces. 

R  =
1F + 

2F  

 And its magnitude is: cos2 21

2

2

2

1 FFFFR   

 

Figure II.8: Resulting from two forces 

The direction is determined by:  

 sinsinsinsin 3

3

2

2

1

1 RFFF
  

II.3 Force Diagram 

This is a graphical method used in the case of plane problems to determine the intensity of forces acting 

on a system in equilibrium. A body subjected to two forces is said to be in equilibrium if these forces are 

opposite in direction and have the same intensity and direction. If the body is subjected to three forces, for 

the body to be in equilibrium, the three forces must be concurrent. This relationship comes from the 

resultant equation derived from the fundamental principle of statics; the two sliders have the same central 

axis (the points of application of the forces are on a line collinear with the direction of the forces); this 

relationship comes from the moment equation derived from the same principle. 

 

Figure II.9: Force diagram 
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II.4 Joints and Connections 

II.4.1 Degrees of Freedom of a Free Solid 

A solid is said to be free if it can move in any direction without restriction. Six independent directional 

movements are considered: 

 Three degrees of translation 

 Three degrees of rotation 

The degrees of freedom are often presented in the form of a matrix where the columns give a type of 

movement (translation or rotation) and the rows the considered direction (x, y, or z). 

 

Figure II.10: Degrees of freedom 

• Degrees of freedom refer to the number of independent parameters or values required to specify the 

state of an object. 

• For a body to be in static equilibrium, all possible movements of the body need to be adequately 

restrained. 

• Free body diagrams are used to identify the forces and moments that influence an object.  

• Drawing a correct free-body diagram is the first and most important step in the process of solving an 

equilibrium problem. 

II.4.2 Definition of a Connection 

Connections are material bodies that oppose the movement of the solid. There is said to be a connection 

between two solids when one solid cannot move freely relative to another, reducing its degrees of 

freedom compared to a free body. The considered solids in mechanics can be free or connected depending 

on the case.  

A solid is said to be free if it can move in any direction. For example, a stone thrown into space is a free 

solid. A solid is said to be connected if it can only move in determined directions or is constrained to 

remain immobile.  

Material bodies that oppose the movement of the solid are called connections, and the forces they exert on 

the solid are called reaction forces. 
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II.4.3 Different Types of Connections and joints 

Components in machinery, buildings etc., connect with each other and are supported in a number of 

different ways. In order to solve for the forces acting in such assemblies, one must be able to analyses the 

forces acting at such connections/supports. 

II.4.3.1 Free Connection 

This connection is essentially the absence of a connection; the solid is "left to itself" (e.g., a satellite in 

space or a projectile). There are six degrees of freedom and no transmitted contact force (no reaction). 

II.4.3.2 Simple Support (Roller) 

One of the most commonly occurring supports can be idealized as a roller support. Here, the contacting 

surfaces are smooth and the roller offers only a normal reaction force. This reaction force is labeled Ry , 

according to the  x- y coordinate system shown. This is shown in the free-body diagram ofconventional 

the component. 

The solid simply rests on a solid or a polished surface (horizontal, vertical, or inclined) (Figure II.11.a, b) 

or on a cylindrical roller (Figure II.11.c). The reaction of the surface is applied to the solid at the point of 

contact and directed along the normal to the support surface. It is called the normal reaction and is 

denoted by R


.  

A simple support blocks movement in one direction and leaves two degrees of freedom. 

 

                     Figure II.11.a                        Figure II.11.b                     Figure II.11.c                                         

Figure II.11: Point connection 

II.4.3.3 Pin joint/hinged support (Double Supports) 

Another commonly occurring connection is the pin joint. Here, the component is connected to a fixed 

hinge by a pin (going “into the page”). The component is thus constrained to move in one plane, and the 

joint does not provide resistance to this turning movement. The underlying support transmits a reaction 

force through the hinge pin to the component, which can have both normal (Ry) and tangential (Rx) 

components. 

In practice, the solid body is sometimes articulated by: 

 An articulated support (Figure II.12.a) 

 A cylindrical articulation (sliding pivot connection, annular linear connection) (Figure II.8.b) 

 Or a spherical articulation (ball-and-socket joint) (Figure II.8.c) 
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The solid is in contact with another solid with a cylindrical surface, blocking translations in two 

directions. The solid thus has a translation along the axis Oz  and a rotation around the same axis. The 

reaction along the axis Oz  of the articulation is zero. 

0zR   yx RRR   

 

                   Figure II.12.a                   Figure II.12.b                     Figure II.12.c     

Figure II.12: Articulated solids 

II.4.3.4 Flexible Connection (String, Rope, Chain) 

The reaction T is called tension. It is applied at the attachment point of the flexible link to the solid and 

directed along the flexible connection (the string, rope, chain, etc.) (Figure II.13). 

 

Figure II.13: Flexible connection 

II.4.3.5 Fixed Connection 

Finally, in Figure II.14 is shown a fixed (clamped) joint. Here the component is welded or glued and 

cannot move at the base. It is said to be cantilevered. The support in this case reacts with normal and 

tangential forces, but also with a couple of moment M, which resists any bending/turning at the base. 

The fixed connection between two solids blocks their relative movements in all directions, preventing any 

movement (e.g., a cantilever beam). There are six reactions (three force components and three moment 

components). (Figure II.14) 

The reactions are represented by components zyx RRRR  and a moment AM  that prevents the 

rotation of the solid. 
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Figure II.14: Connection Embedding 

II.5 Conditions for Equilibrium of a Rigid Body 

II.5.1 Basic Conditions for Equilibrium of a Rigid Body 

A solid body is in static equilibrium when several forces act simultaneously on it and these forces do not 

modify its state (state of rest or its state of movement).  

For a solid body to be in static balance, the torso of external forces must be zero: 
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For a rigid body subjected to external forces and in equilibrium, the following conditions must be met: 

 The resultant force of all external forces acting on the body must be zero: 



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 The resultant moment of all external forces about any point must be zero: 



n

i

iFM
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These two equilibrium conditions can be translated into six analytical equations by the projection of the 

elements of the force torso onto the axes of an orthonormal reference frame ),,,( kjiOR : 

1.  Three equations related to the resultant of external forces: 
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2.  And three equations related to the moment of forces relative to point O: 
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II.6 Equilibrium of Solids in the Presence of Friction 

II.6.1 Sliding Friction 

Sliding friction is the resistance that opposes the sliding of two rough surfaces in contact. 

II.6.1.1 Experiment 

Consider a solid of weight P  resting on a horizontal surface. We apply a horizontal force T  to this solid 

(Figure II.15.a). 

 

                      Figure II.15.a          Figure II.15.b                     Figure II.15.c                                      

1. Polished contact surfaces:  

The weight force P  is balanced by the reaction N . In this case, no force opposes the driving force T  

(Figure II.15.a). The solid is in motion. 

2. Rough contact surfaces:  

The weight force P  is balanced by the reaction N . The solid can remain at rest; in this case, there is 

another force that opposes the movement of the solid in the same direction and opposite to T  (Figure 

II.15.b). This force is called the sliding friction force frF . 

Increasing the forceT gradually (Figure II.22.c). As long as the solid remains at rest, the force frF  

balances the driving force at each moment. The force frF  increases with T  up to a maximum value Fmax 

( frF  ≤ Fmax)  corresponding to the instant the solid begins to move. The maximum force corresponds to 

the limit case of the equilibrium of the solid, that is to say at the moment when it is halfway (in the 

transition zone) between rest and movement. 

II.6.1.2 Static Friction Force 

Sliding friction is a resisting force that acts in the tangent plane to the two contact surfaces, in the 

opposite direction to the driving force, and parallel to the contact surfaces. The friction force that acts 

when the body is stationary (at rest) is called the static friction force. 
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Figure II.16: Static Friction Force 

According to Amontons-Coulomb's law, the maximum value of the static friction force maxF  or sF  is 

proportional to the normal pressure N  of the solid on the support surface: maxF =fs. N  

Where fs coefficient of static friction that depends on the materials of the contact surfaces and their 

conditions. Some values of the sliding friction coefficient fs  for various materials are: 

 Steel on ice: 0.027 

 Steel on steel: 0.15 

 Bronze on cast iron: 0.16 

 Leather on cast iron: 0.28 

II.6.1.3 Kinetic Friction Force 

The friction force acting when a solid moves over another is the kinetic friction force 
kF . It is also 

proportional to the normal reaction N : 
kF =fk. N  

Where fk is the kinetic friction coefficient. It depends on the speed of movement and is always less than 

the static friction coefficient (fk < fs ). 

II.6.2 Friction Angle 

 

                                 Figure II.17.a                                                 Figure II.17.b 

When a solid body is at rest, the total reaction of a rough surface, considering the friction, is determined 

in magnitude and direction by the diagonal of the rectangle formed by the normal reaction N  and the 

friction force frF  (Figure II.24.a): R = N + frF  

 The direction of R  makes an angle β with N  on the opposite side of T . As T  increases, the direction of 

R  deviates more from the normal. The maximum deviation occurs when Ffr = Fmax .  
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The maximum angle of deviation β is called the friction angle φ (Figure II.17.b) and is expressed as: 

ss
s arctgff
N

Nf

N

F
tg   max  

II.6.3 Rolling Friction 

Rolling friction is the resistance that occurs when a solid rolls over another. Consider a cylindrical roller 

of weight P  and radius R  resting on a horizontal surface and acted upon by a driving force T  at its 

center of gravity (Figure II.18.a). 

 

Figure II.18.a                                   Figure II.18.b 

The support surface deforms under the roller's weight, shifting the point of application of the reactions N  

and the friction force frF  from point A to point C (Figure II.18.b). The equilibrium equations of the roller 

are:  

00
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
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ix FTF  
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Where Ffr =T et N=P 

The couple (Ffr, T) tends to put the roller in motion, while the torque (N, P) opposes the movement and 

tends to put the roller at rest. This last torque is called rolling resistance moment, mr, it is equal to the 

moment of force N relative to point A. 

mr = MA(N)  

∑MA(F) = MA(N) – T R = 0 

 Where mr = T R  

At the instant the solid starts to move, the resisting moment reaches its maximum value. Experiments 

show that this value is proportional to the normal reaction:  
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(mr)max = fr N  

The proportionality coefficient fr is the rolling friction coefficient, measured in length units. At rest, we 

have: mr ≤ (mr)max  

T R ≤ fr.N  

Thus: T ≤ N
R

f r  

Generally, 
R

f r  is much smaller than the sliding friction coefficient fs, which is why when the rest is 

disturbed, the roller starts to roll over the support surface without sliding on it. 

II.6.4 Friction of a Cable on a Pulley 

 

Figure II.19: Friction of a Cable on a Pulley 

The relationship linking the two tensions T1 and T2 of a cable on a rough cylindrical surface (Figure II.26) 

is written as: sfe
T

T


2

1  

Where β is the angle of contact arc of the cable on the cylindrical surface, fs  is the static friction 

coefficient, and T1 is always greater than T2 (T1 > T2) depending on the direction of movement. The 

resultant friction force between the cable and the cylindrical surface is: F = T1 – T2 

 



Chapter II: Solid Static 

 
38 

 



Chapter II: Solid Static 

 
39 

 

 

 

 

 

 

 

 

 

 

 



Chapter II: Solid Static 

 
40 

Application Exercises 

Exercise 01: 

A homogeneous sphere O of weight 12 kN rests on two polished inclined planes AB and BC 

perpendicular to each other (Figure). Knowing that the plane BC makes an angle of 60° with the 

horizontal, determine the reactions of the two inclined planes on the sphere. 

 

Solution 01: We remove the links of the sphere and replace them with the corresponding reactions 

(Figure 1). The sphere is in equilibrium under the action of three forces: 

 The weight P acting vertically downwards. 

 The reaction NA perpendicular to the plane AB towards the center O of the sphere. 

 The reaction NC perpendicular to the plane BC towards the center O of the sphere. 

 

The geometric equilibrium condition is based on the closed force polygon rule. We start by constructing 

the force polygon with the known force P. From an arbitrary point A1, we draw the vector P (Figure 2). 

We place the origin of the next force, for example, NA, at the end B1 of the force vector P . The magnitude 

of 
AN  is unknown. 

Since the solid is in equilibrium, the force triangle P, NA, NC must be closed, so the end of the force 

vector CN  must coincide with the origin of vector P , A1. 

 

Applying the sine theorem on triangle A1B1C1: 






 30sin60sin90sin

CA NNP
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Thus: KNPN A 4.10
90sin

60sin



  

KNPNC 6
90sin

30sin



  

Exercise 02: 

Determine the magnitude T of the tension in the supporting cable and 

the reaction (magnitude of the force) on the pin at A for the jib crane 

shown. The beam AB is a standard 0.5-m I-beam with a mass of 95 kg 

per meter of length.  

 Equating the sums of forces in the x and y directions to zero gives 

KNAAF xx

n

i

ix 77.17025cos61.190
1





, 
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i

iy 37.6066.425sin61.190
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)5.05.2(66.4)12.05.15(10)12.05)(25sin(25.0)25cos(0)(
1
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i
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From which KNT 61.19  

Exercise 03: 

For the system shown in the Figure, determine the magnitude of the force F  and the reactions at the 

cylindrical supports in A and B, knowing that friction at cylindrical surfaces C and D is negligible and we 

have: Q = 8 KN, r = 5 cm, AC = CB = 50 cm et AK = 40 cm. 

 

Solution 02: We remove the links of the system shown in the Figure and replace them with the 

corresponding reactions. According to the linkage axiom, the system becomes free under the action of an 

arbitrary system of forces. Since friction in the pulley D is negligible, the tension in the cable CD remains 

constant: T=Q=8kN. 
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To determine the magnitude of the force F  and the reactions at the cylindrical supports in A and B, we 

write the static equilibrium condition of the isolated solid body under an arbitrary system of forces. This 

condition is translated by the nullity of the external force tensor in A or B. The projection of the elements 

of this tensor on the axes is written as:  
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Where  

0..0)(
1



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iBx
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0..0)(
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n

i

iBz


   (7) 

From the equation of equilibrium: F=1 KN 

And from (4) it is determined: RBz = 0 KN 

 And from (5) it is determined: RBx = 4 KN  

Thus, from (6), we determine: RAZ = 1 KN  

From (7), determine: RAx = 4 KN 
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The verification of equations (2) and (3), confirms the obtained results. 

Exercise 04: 

A force F=100 N is applied to a solid block with a weight W=300 N, placed 

on an inclined plane (Figure). The coefficient of static friction on the inclined 

plane at an angle α with respect to the horizontal is fs=0.25. Calculate the 

frictional force required to maintain equilibrium and check the equilibrium of the block if fs=0.4. What do 

you notice? 
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Chapter III: Kinematics of the Rigid Body 

III.1 Introduction 

A rigid body is an idealization of a body that does not deform or change shape. Formally it is defined as a 

collection of particles with the property that the distance between particles remains unchanged during the 

course of motions of the body. Like the approximation of a rigid body as a particle, this is never strictly 

true. All bodies deform as they move. However, the approximation remains acceptable as long as the 

deformations are negligible relative to the overall motion of the body. 

Kinematics of rigid bodies: relations between time and the positions, velocities, and accelerations of the 

particles forming a rigid body. 

Classification of rigid body motions: 

- Translation:    rectilinear translation, curvilinear translation 

- Rotation about a fixed axis; 

- General plane motion; 

- Motion about a fixed point; 

- General motion; 

 

III.2 Fundamental Assumptions 

To study the motion of a material point P, or more generally a system of particles or solids, an observer 

must identify their position: 

 In space; 

 In time. 

In classical kinematics, it is assumed that: 

 space is Euclidean (three-dimensional); 

 Time is absolute (independent of the observer). 

III.3 Reference Frames 

To fully study kinematic motion, the observer must define: 

 a spatial reference frame linked to the observer with an origin O and an orthonormal basis 

( i , j , k ) forming the trihedron (O, i  , j  , k ), which fully defines the spatial reference frame; 

 a time reference (time scale) with an origin and a unit of measurement. In the MKSA system, the 

second is the unit of time. 

The spatial reference frame and the time reference together define the <space-time> reference frame 

noted as (R). In this frame, at a given moment by the clock, the position of a point r (t) is defined by its 

coordinates x (t), y (t), z (t) such that: 

ktzjtyitxOr )()()(   

The position of point P is known instantaneously in both space and time. 
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III.4 Motion Relative to Translating Axes 

III.4.1 Trajectory 

Let point M be identified in a fixed reference frame R (O, i , j , k  ). Its position is given at each instant t 

by the vector (Figure III.1): 

ktzjtyitxOMtr )()()()(  ,  

The vector )(tr  has components in the fixed reference frame at instant t.  











)(

)(

)(

)(

tz

ty

tx

tr  

 

Figure III.1: Trajectory of a point 

The displacement of point M in space is given by the parametric equations of coordinates (x, y, z) as 

functions of time. By eliminating the time parameter, we obtain the trajectory described by this point in 

space. 

)(tr = M(t): position of point M in R (O, i , j , k  ) at instant t. 

)( ttr  =M(t+Δt): position of point M in R (O, i , j , k ) at instant t+Δt.  

The displacement vector from )(tr to )( ttr   is given by Δ )(tr = )( ttr  - )(tr . 

The positions occupied by point M in space describe a trajectory (Γ) with respect to the chosen reference 

frame R (O, i , j , k  ). 

III.4.2 Velocity Vector 

The material point moves from position M(t) to position M(t+Δt) during the time interval Δt at an average 

speed: 

t

tr

t

trttr

t

MM
Vm














)()()('
 

The instantaneous velocity vector is obtained when: Δt →0, defined as: 
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t

trd

t

tr
VV

t
m

t 









)()(
limlim

00
 

This vector is always tangent to the trajectory and directed in the direction of motion. 

III.4.3 Acceleration Vector 

The derivative of the velocity vector in the same reference frame R (O, i , j , k  ) gives the instantaneous 

acceleration of point M: 

t

tV

t

tVttV
m











)()()(
  

The instantaneous acceleration is: 

²

)(²)()(
limlim

00 dt

trd

t

tVd

t

tV

t
m

t











  

The two kinematic vectors help to understand the nature of the motion and to predict the different phases, 

depending on whether the velocity vector is in the same or opposite direction to the acceleration vector. 

III.5 Coordinate Systems 

The material point M can be identified in space within a fixed reference frame (R) centered at O by three 

different but related types of coordinates: 

 Cartesian: (x, y, z) with unit vectors of the reference frame ( i , j , k ); 

 Cylindrical: (r, θ, z) with unit vectors of the reference frame (
ru , u , k ); 

 Spherical: (r, θ, φ) with unit vectors of the reference frame (
re , e , e ). 

These three types of coordinates allow the description of all types of motions of point M in space. 

III.5.1 Cartesian Coordinates 

Also called rectangular coordinates. If point M is identified in R (O, i , j , k  ) by the Cartesian coordinates 

(x, y, z), which depend on time, the position vector OM  would be written as: kzjyixOM   ; 

kzjyixOM   ; 











z

y

x

OM  ; ²²² zyxOM   

The velocity and acceleration vectors are deduced by the first and second derivatives:  

k
dt

dz
j

dt

dy
i

dt

dx

dt

tOMd
tV 

)(
)(  ; written as: kzjyixtV  )(  
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With: ²²²)( zyxtV    

k
td

zd
j

dt

yd
i

dt

xd

dt

tVd
t

²

²

²

²

²

²)(
)(   ; written as: kzjyixt  )(  

With: ²²²)( zyxt                                                                     

                                                                                                                Figure III.2: Cartesian coordinates 

III.5.2 Cylindrical Coordinates 

If point M is identified by the cylindrical coordinates (r, θ, z), which depend on time, in a reference frame 

R (O, 
ru , u , k ), the position vector would be written as: kzurOM r   

In the reference frame R (O, 
ru , u , k ), the vectorOM  is written as: 











z

r

r

OM 



sin

cos

 

 

Figure III.3: Cylindrical coordinates 

kz
dt

ud
rur

dt

OMd
V r

r
   

With: 



u

dt

d

d

ud

dt

ud rr  .  , we obtain: kzururV r
    

rVr
 , 

rV  , zVz
  

The acceleration is determined by: 

kz
dt

urd

dt

urd

dt

Vd

dt

OMd r 



)()(

²

² 
  

kz
dt

ud
rurur

dt

ud
rur r

r



  

   
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We have: 



u

dt

d

d

ud

dt

ud rr  .  ; 
ru

dt

d

d

ud

dt

ud 



  . ; 

The expression for acceleration becomes: 

kzurrurr r


   )2(²)(  ; Where ²)²2(²)²( zrrrr    ; 

²)(   rrr   ; )2(  
 rr   ; zz

  

III.5.3 Spherical Coordinates 

In the reference frame R (O, i , j , k  ), the vector OM has components: 

















sin

sincos

coscos

r

r

r

OM  

In spherical coordinates, it is written as: 
rr ereOMOM   

 

Figure III.4: Spherical coordinates 

With:  

kuer


 sincos   ; kue


 cossin   

 eeu r


sincos   ; 


e

d

ud 


  ; u
d

ed 




  ; 


e

d

ed r 


  ; re
d

ed 






 

So: kuek
dt

ud
u

dt

ed r

















  cossincoscoscossin   

  eekue
dt

ed r 










 cos)cossin(cos  

The velocity of point M is deduced by:   ererer
dt

ed
rer

dt

erd

dt

OMd
V r

r
r

r 







  cos
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



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The acceleration is easily deduced by differentiating the velocity expression with respect to time: 

dt

erd

dt
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dt
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dt

Vd r
)()cos()( 






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)sin(cos. 
 




eeu

dt

d

d

ed

dt

ed
r




  

)sin(coscos²sincoscos
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)cos(

  
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As then: re
dt
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
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  

Summing the three terms, we get: 

 ²cos²²  rrrr   




  sin)²(.
cos

sincoscoscos  rr
dt
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r
rrrr   

  cossin²)²(.
1

sincos²  rr
dt

d

r
rrrr   

III.6 Special motions 

III.6.1 Circular Trajectory motion 

A particle M is in circular motion if at any instant t, it is located at a point P on a circle (c) of radius "a" 

and center O. Choose an orthonormal reference frame with origin O and unit vectors i


and j


 , located in 

the plane of the circular trajectory. 



Chapter III: Kinematics of the Rigid Body 

 
52 

 

Figure III.5: Circular motion 

Choose a circle in the (Oxy) plane so that its center coincides with that of the reference frame. Point P on 

the circle is identified by two coordinates: 

 The radius a of the circle and the angle ),( OPOx  that the vectorsOP  make with the axis Ox . 

Let
re


the vector be defined by: 

OP

OP
e r


 , then we have: 
reOPOP


.  

The unit vector 
re


changes direction with the angle θ: hence 


e

d

ed r 


  and re
d

ed 




  

The radius of curvature is constant here; the velocity of point P is given by the derivative of the position 

vector: 





ea

dt

d

d

ed
a

dt

ed
a

dt

OPd
PV rr 


 .)(  

The acceleration of point P is deduced by: 

 eaea
dt

PVd
P r


 ²

)(
)(  

= ω: angular velocity of point P; 

 = : angular acceleration of point P. 

The velocity of point P is tangent to the circle with an algebraic value: eaPV



)(  

The acceleration of point P has two components: one tangential:   aat  , the other normal: 

²²  aan   .  

Note that the normal acceleration vector n is always opposite to the position vector OP : 

OPea rn ²²  

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Knowing the angular velocity and acceleration, we can determine the nature of the motion: 

 If  >0 , the motion is accelerated; 

 If   <0, the motion is decelerated; 

 If  =0 =Cte, the motion is uniform; the tangential acceleration is zero, but the normal 

acceleration is not. 

III.6.2 Helical Trajectory motion 

A point P moves on a helical trajectory in a reference frame R (O, i , j , k  ) if it describes a right helix 

drawn on a cylinder of radius a. The Cartesian coordinates of point P in this reference frame are given by 

the parametric equations as functions of time t in the following form: 

















)()(

)(sin)(

)(cos)(

tbz

tay

tax

OP







                       a: radius of the helix  

The angle θ plays the same role as in cylindrical or polar coordinates. The parameter b = Cte is called the 

pitch of the helix. Note that when the angle θ increases by 2π, the positions x and y do not change, but 

along the vertical z-axis, there is a displacement of: 2π b ; 

)()2(  xx   ; )()2(  yy   

bzbbbz  2)(2)2()2(   

The position vector of point P in the reference frame R (O, i , j , k ) is given by: 

kbeakzeaOP rr


  

The velocity and acceleration vectors are written as: 

kVeVkbeaPV z


   )(  

kbeaeaP r


    ²)(  

 

Figure III.6: Helical trajectory motion 



Chapter III: Kinematics of the Rigid Body 

 
54 

Note that the ratio between the components of the velocity along the unit vectors e


 and k


is independent 

of the angle θ. 

a

b

a

b

V

Vz 








 

This expression indicates that any tangent at a point P on the helix makes a constant angle with the 

vertical passing through point P and parallel to the vector. The helical motion is uniform if the angular 

velocity of rotation is constant, hence independent of the time parameter (= ω=cte). In this case, the 

velocity and acceleration expressions are: kbeaPV


  )(  

With ²)²()( baPV    

reaP


²)(    the acceleration is directed inward of the curvature. Previously, in curvilinear motions, it 

was shown that the acceleration of point P is written as n
V

dt

dV
P






²
)(  , where the unit 

vectors


and n


 are the tangential and normal vectors at point P on the curve.  

Applying this relation in the case of uniform helical motion where  e


 and 
ren


 are the tangential 

and normal vectors at point P on the curve, we get:  
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²
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V
ae

V
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V
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
 replacing the velocity by its expression, we 

obtain: 
a

b
a

a

baba
a

²²)²(²)²²(
² 





 




  

Since the normal at P is always directed inward of the curvature, the center of curvature C can be easily 

determined by writing the following relation: 
rePC


 . 

III.7 Kinematics of the Rigid Body 

A perfect rigid body (S) is a set of material elements whose mutual distances do not vary over time. 

Consequently, the velocities between these points are not independent. Hence, the kinematics of the rigid 

body deals with the distribution of velocities of points within a body independently of the causes that 

generated the motion of the solid. 

The mechanics of solids allow us to study the behavior of solids and determine all the kinematic 

parameters of all its points regardless of the nature of the motion. The transport formula allows, by 

knowing the speed of a single point of the solid, to easily deduce the speed of all points of the solid. The 

objective of the kinematics of the solid is to know the position, speed, and acceleration of all points of the 

solid relative to a determined frame of reference. 

III.7.1 Concept of Frames and Reference Systems 

To study the motion of a solid or a system composed of several solids, it is essential to locate the position 

of each point as well as the kinematic vectors in space and time. In classical kinematics, we consider that 
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space is three-dimensional Euclidean and time is absolute and independent of the observer. To locate the 

solid, the observer defines: 

 A spatial frame defined by an origin O and an orthonormal basis ),,( 000 zyx


. The trihedron ),,,( 000 zyxO


 

completely defines the spatial frame in which the coordinates of all points of the solid can be expressed. 

 A time frame (also called a time scale) with an origin and a time unit.  

In the MKSA system, the unit of time is the second. 

These two frames define a space-time frame called a reference frame or simply a frame in classical 

kinematics. We then choose an arbitrary point Os on the solid. The position of this point is given at each 

instant by the position vector sOO  expressed in the frame R ),,,( 000 zyxO


. The coordinates of the point Os 

depend on time and allow us to know at any moment the position of the frame R ),,,( sss zyxO


 linked to 

the solid. The transition from the frame R ),,,( 000 zyxO


 to the frame R ),,,( sss zyxO


 linked to the solid is 

determined by the transition matrix, which expresses the unit vectors ),,,( 000 zyxO


 in terms of the unit 

vectors ),,,( sss zyxO


. This transition matrix is expressed in terms of Euler angles. The orientation of the 

frame linked to the solid is independent of the choice of the point Os. 

The set of translation and rotation parameters constitute the situation parameters or degrees of freedom of 

the solid in space relative to the frame R ),,,( 000 zyxO


. If the number of parameters is equal to 6 (3 

rotations and 3 translations), the solid is said to be completely free in R ),,,( 000 zyxO


. If the number of 

parameters is less than 6, the solid is said to be constrained or subjected to constraints where certain 

parameters do not vary over time. 

III.7.2 Notation Systems 

In the study of kinematics, we adopt the following notation:  

Let Ri ),,,( iii zyxO


 be a frame linked to the observer and P a point of the solid: 

 POi : Position vector of point P relative to frame Ri; 

 
dt

POd
PV i

i
i )(


: Speed of point P relative to frame Ri; 

 
dt

PVd
P

ii
i )(

)(




 : Acceleration of point P relative to frame Ri. 

The kinematic parameters are always linked to the frame. The kinematic parameters (velocity and 

acceleration vectors) of the points of the solid are studied in a frame Ri ),,,( iii zyxO


linked to the observer. 

This frame is called the study frame.  

The components of the velocity )(PV i


 and acceleration vectors )(Pi


 being measured and defined in the 

frame Ri ),,,( iii zyxO


, we can know their components in any frame of space Rp ),,,( PPP zyxO


, which we 

will call the projection frame. 

Choosing this projection frame allows us to express the kinematic parameters with simpler mathematical 

expressions. It is often interesting to choose the projection frame different from the study frame to 
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simplify and reduce calculations. The projection frame being mobile relative to the study frame, care must 

be taken during derivations as the unit vectors of the projection frame change direction and this must be 

accounted for. 

III.7.3 Motion of a Frame Rk Relative to a Frame Ri Linked to the Observer 

Let Ri ),,,( iiii zyxO


 be a frame linked to the observer and Rk ),,,( kkkk zyxO


 a frame in any motion 

relative to the first. Any point in space can be completely located in Rk and its components deduced in Ri 

or conversely by knowing the motion of Rk relative to Ri. The motion of the frame Rk is completely 

known if: 

 The position of its center Ok is completely known in Ri; 

 The orientation of the axes of Rk is known relative to those of Ri. 

III.7.3.1 Location of the Center Ok of the Frame Rk 

The location of the center point Ok of the frame Rk is determined by the components of the vector kiOO  

linking the two centers of the frames in Ri or Rk, which results in the following relations:  

In 








iki

iki

iki

R

i

zOO

yOO

xOO

R

i







.

.

.

:  In 








kki

kki

kki

R

k

zOO

yOO

xOO

R

k







.

.

.

:  

III.7.3.2 Formula for the Mobile Basis 

Let Ri ),,,( iiii zyxO


 be a fixed frame and Rk ),,,( kkkk zyxO


 a frame mobile relative to the first. The unit 

vectors of the frame Rk are orthogonal to each other and have constant modules equal to 1, but they 

change direction in space. 

1 kkk zyx


and 0. kk yx


, 0. kk zx


,  0. kk zy


 

We will determine the derivatives of these vectors in the frame Ri: 
dt

zd

dt

yd

dt

xd k

i

k

i

k

i 

,,  

Let )( kkk

i

k zcybxa



  be the rotation vector of the frame Rk ),,,( kkkk zyxO


 relative to the frame 

Ri ),,,( iiii zyxO


.  

We then have the following relations: 

);,( kk
k

i

k
k

i

zy
d

xd
x

d

xd 








 We can write: kkk
k

i

zbycx
d

xd 


 .0


 

k

i

kkkk

i

k

i

k

i

x

c

b

a

zbycx
dt

d

d

xd

dt

xd 








































0

0

1

).0( 



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);,( kk
k

i

k
k

i

zx
d

yd
y

d

yd 








 We can write: kkk
k

i

zayxc
d

yd 


 0.


 

k

i

kkkk

i

k

i

k

i

y

c

b

a

zayxc
dt

d

d

yd

dt

yd 








































0

1

0

)0.( 



 

);,( kk
k

i

k
k

i

yx
d

zd
z

d

zd 








 We can write: kkk
k

i

zyaxb
d

zd 


0. 


 

k

i

kkkk

i

k

i

k

i

z

c

b

a

zyaxb
dt

d

d

zd

dt

zd 








































1

0

0

).0( 



 

So we have: ;k

i

k
k

i

x
dt

xd 

  ;k

i

k
k

i

y
dt

yd 

  k

i

k
k

i

z
dt

zd 

  

III.7.3.3 Derivative in the Frame Ri of a Vector Expressed in a Frame Rk 

The vector )(tV


can be written as 
kkkkkk zZyYxXtV


)( in the frame Rk.  

Its derivative in the frame Rk is expressed as: kkkkkk

k

zZyYxX
dt

tVd 



)(

 

Its derivative in the frame Ri is written as:  

k

i

kkk

i

kkk

i

kk

ki

zZyYxX
dt

tVd

dt

tVd 



)()(

 

)(
)(

(
)()(

tV
dt

tVd
zZyYxX

dt

tVd

dt

tVd i

k

k

kkkkkk

i

k

ki 





  

Finally, we obtain: )(
)()(

tV
dt

tVd

dt

tVd i

k

ki 


  

III.7.3.4 Properties of the Vector i

k


 

a) The vector i

k


 is antisymmetric with respect to indices i and j: i

k


=- k

i


 

b) Chasles' formula: i

k


 = j

k


 +
i

j


 (principle of composition) 

c) 
dt

d

dt

d i

k

ki

k

i 





Equality of derivatives with respect to indices. 
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III.7.4 Transition Matrix (Type 1 Euler Angles) 

Let Ri ),,,( iiii zyxO


 be a fixed frame and Rk ),,,( kkkk zyxO


 a frame linked to the solid (S) in any motion 

in space. The center Ok of the frame Rk belongs to the solid Ok  (S). In the case of type 1 Euler angles, 

we consider that the centers Oi and Ok of the two frames are coincident: OiOk, which means that the 

frame Rk only undergoes rotations relative to the frame Ri. Three independent parameters are necessary to 

completely define the orientation of the frame Rk relative to that of Ri. 

The transition from frame Rk to frame Ri is achieved by three rotations using two intermediate frames R1 

and R2. 

III.7.4.1 Transition from Frame R1 to Frame Ri: (the yaw rotation) 

The rotation is performed around the axis 1zzi


 . 

We transition from frame Ri ),,,( iiii zyxO


 to frame R1 ),,,( 1111 zyxO


 by rotating by an angle ψ: called the 

precession angle. The rotation speed is given by: 

11 zzi

i 






  Because iz


 is confused with

1z


 

The representation is done by plane figures from which we construct 

the transition matrices. Thus, we have: 

iii

iii

iii

zyxz

zyxy

zyxx













.0.0

.0cossin

.0sincos

1

1

1





 

These three equations can be written in matrix form, and we obtain: 


















































i

i

i

z

y

x

z

y

x













.

100

0cossin

0sincos

1

1

1





 



















100

0cossin

0sincos

1




iRRP This is the transition matrix from frame R1 to frame Ri.  

The transition matrix from Ri to R1 is equal to the transpose of the above matrix
iRRP 1
 :

i
i

RR
T

RR PP  
1

1
. 

III.7.4.2 Transition from Frame R2 to Frame R1: (the pitch rotation) 

The rotation is performed around the axis 21 xx


 . 

We transition from frame R2 ),,,( 2222 zyxO


 to frame R1 ),,,( 1111 zyxO


 by rotating by an angle θ: called the 

nutation angle. The rotation speed is given by: 
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21

1

2 xx



   

21

1

2 xx



   Because 

1x


 is confused with
2x


 

Thus, we have: 

i

i

i

zyxz

zyxy

zyxx











cossin.0

sincos.0

.0.0

111

112

112







 

In matrix form we get:                                                                               


















































i

i

i

z

y

x

z

y

x













.

100

0cossin

0sincos

1

1

1





 



















100

0cossin

0sincos

1




iRRP  This is the transition matrix from frame R2 to frame R1  

III.7.4.3 Transition from Frame Rk to Frame R2: (the roll rotation) 

The rotation is performed around the axis kzz


2 . 

We transition from frame Rk to frame R2 by rotating by an angle 

φ: called the proper rotation angle. The rotation speed is given 

by: 

kk zz







  2

2  Because iz


 is confused with 1z


                                                     

Thus, we have: 

222

222

222

.0.0

.0cossin

.0sincos

zyxz

zyxy

zyxx

k

k

k

















 

In matrix form we get:                                                                               


















































2

2

2

.

100

0cossin

0sincos

z

y

x

z

y

x

k

k

k
















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

















100

0cossin

0sincos

2




RRk
P  This is the transition matrix from frame Rk to frame R2 

The passage from the Rk reference to the Ri reference or vice versa is done by three successive rotations 

such that all the axes of Rk occupy positions different from that of Ri. The transition matrix from Rk to Ri 

is given by the product of the three successive matrices, we obtain: 
























































i

i

i

k

k

k

z

y

x

z

y

x













.

coscossinsinsin

sincoscoscoscossinsincoscossincossin

sinsincoscossinsincossincossincoscos







 

The transition matrix from Ri to Rk is given by the transpose of the latter. 

The instantaneous rotation vector of the reference frame Rk with respect to Ri will have the vector 

expression: 

21 zxzi

i

k








   

It will have a different expression depending on whether it is written in one or the other of the two 

markers. 

In Ri, we will have: 





























cos

sincossin

cossinsin

iR

i

k    

In Rk, we will have: 






















cos

sincossin

cossinsin








kR

i

k  

This instantaneous rotation vector allows deducing the speed of all the solid points by knowing the speed 

of a single point belonging to the solid. 

III.8 Fields of Velocity and Acceleration of a Solid  

Consider a fixed reference frame Ri ),,,( iiii zyxO


and a solid (Sk) linked to a moving reference frame 

Rk ),,,( kkkk zyxO


 in space. For any point on the solid (Sk), we can associate its position vector, thus its 

velocity vector and acceleration vector. 

Consider two points Ak and Bk belonging to the solid (Sk). We will seek a relationship between their 

velocities and their accelerations. 
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III.8.1 Velocity Fields 

The solid (Sk) is non-deformable, so the distance CteBA kk   remains constant over time in both reference 

frames. This vector will be expressed differently in Ri and Rk. The velocities of points AK and Bk are 

different because the solid has arbitrary motion. 

 

Figure III. 7: Velocity fields 

In reference frame Ri: CteAOBOBABAAOBO kikikkkkkiki   

In reference frame Rk: CteAOBOBABAAOBO kkkkkkkkkkkk   

From these two expressions, we can deduce a relationship between the velocities of the two points 

belonging to the solid. 

The velocities of the two points with respect to the reference frame Ri are given by:  

dt

AOd
AV Ki

i

k

i )(


and 
dt

BOd
BV Ki

i

k

i )(


 

These two expressions can be written as:  

ki

i

k
Ki

k

Ki

i

k

i AO
dt

AOd

dt

AOd
AV 


)( ………….(1) 

ki

i

k
Ki

k

Ki

i

k

i BO
dt

BOd

dt

BOd
BV 


)( ………….(2) 

By subtracting the two expressions (2) - (1):  

)(
)(

)()( kiki

i

k
KiKi

i

k

i

k

i AOBO
dt

AOBOd
AVBV 





 

We know that: 0
)(




dt

BAd

dt

AOBOd kk

i

KiKi

i

 because kkkiki BAAOBO   
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Thus, we obtain the distribution relationship of velocities in a solid: )()()( kk

i

kk

i

k

i BAAVBV 


 

This relationship is of great importance in the kinematics and dynamics of solids. It allows us, from the 

velocity of one point of the solid, to deduce the velocity of all other points of the solid by knowing the 

rotational velocity of the associated reference frame. 

Note: 

a) If the rotation vector is zero 0 i

k , then the solid is in pure translation motion, and all points of the 

solid have the same velocity: )()( k

i

k

i AVBV


 ; 

b) If 0)( k

i AV


and )()( kk

i

kk

i BABV 


, the solid is in pure rotational motion around the point 

)( kk SA  ; 

c) The general motion of a solid can be described as a composition of a translation motion of point 

)( kk SA   at velocity )( k

i AV


and a rotational motion around point )( kk SA   at rotational velocity i

k . 

III.8.2 Equiprojectivity of the Velocity Field of a Solid  

We can demonstrate it in two different methods.  

a) Previously, we showed that: )()()( kk

i

kk

i

k

i BAAVBV 


 

 

Figure III.8 : Equiprojectivity of the velocity field 

By multiplying this expression by the vector kk BA , we obtain:  

).()(.)(. kk

i

kkkk

i

kkk

i

kk BABAAVBABVBA 


 

By circular permutation of the mixed product, we can easily see that the expression:  

0).().(


 kkkk

i

kkk

i

kkk BABABABA  
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Thus, we obtain the equality: )(.)(. k

i

kkk

i

kk AVBABVBA


   

(Property of Equiprojectivity of the Velocity Field of the Solid) 

b) This expression can be found another way. The solid is non-deformable, and the distance kk BA  is 

constant, thus:  

0
)²(


dt

BAd kk  

02
)²(


dt

BAd
BA

dt

BAd kk
kk

kk  

0))()((2  k

i

k

i

kk AVBVBA


From where: )(.)(. k

i

kkk

i

kk AVBABVBA


  

This equiprojectivity property implies the existence of a free vector i

k


 such that: 

)()()( kk

i

kk

i

k

i BAAVBV 


which allows us to introduce the notion of kinematic screw. 

III.8.3 Acceleration Fields  

For each point of the solid (Sk) linked to the reference frame Rk, we deduce the acceleration from the 

velocity using the relation: 
dt

AVd
A k

ii

k

i )(
)(




  

We will find a relationship linking the accelerations: )( k

i A


 and )( k

i B


. 

We have already established a relationship between the velocities of the two points: 

)()()( kk

i

kk

i

k

i BAAVBV 


 

We deduce the relationship between the accelerations by differentiating the expression of velocities.  

dt

BAd
BA

dt

d

dt

AVd

dt

BVd
B kk

i
i

kkk

i

k

i

k

ii

k

ii

k

i 






 )()(

)(  

And since: kk

i

kkk

i

k
kk

k

kk

i

BABA
dt

BAd

dt

BAd



because 0




dt

BAd kk

k

 

Finally, we obtain the relation between the accelerations of the two points Ak and Bk of the solid: 

)()()( kk

i

k

i

kkk

i

k

i

k

i

k

i BABA
dt

d
AB 








  

We observe that if the rotational velocity is constant 0


i

k , the expression becomes:  

)²()()()()( i

kkkk

i

kk

i

k

i

kk

i

k

i BAABAAB 


  
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III.8.4 Kinematic Screw  

The distribution formula of velocities is given by the relation: )()()( kk

i

kk

i

k

i BAAVBV 


 

The transport formula of moments between two points Ak and Bk of the solid is expressed as: 

kkkk BARAMBM 


)()(  

We note that there is equivalence between these two equations. The velocity vector at point Bk is the 

moment at point Bk of a screw, which we will denote as  
kBC , and the resultant is none other than the 

instantaneous rotation vector i

k


. 

The kinematic screw at point Bk (or the distribution screw of velocities) relative to the motion of the solid 

with respect to Ri has the reduced elements: 

 Instantaneous rotation vector: i

k


 

 Velocity at point Bk: )( k

i BV


 

It will be noted in the form :  









kk

i

kk

i

k

i

i

k
B

BAAVBV
C

k




)()(
 

The kinematic torso is of great interest because it completely characterizes the motion of a solid relative 

to the Ri mark with regard to speeds. As the reduction elements of the kinematic torso are time functions, 

and then the kinematic torso depends on it, so it has at every moment a different result and velocity field.  

III.8.5 Instantaneous axis of rotation 

The instantaneous axis of rotation is the central axis of the kinematic torso. We have shown previously 

that the central axis is the set of points P such that the moment of the torso at this point is parallel to the 

resultant. In the case of the kinematic torso, the set of these points constitutes the axis whose speeds are 

parallel to the vector instantaneous speed of rotation. 

At each instant the motion of the solid can be considered as being the composition of a rotational motion 

of rotation speed i

k


 around the instantaneous axis and a translation whose instantaneous direction is 

parallel to the rotation speed vector i

k


. 

Let a solid (S) be linked to a reference frame Rk in any motion relative to a reference frame Ri and the 

instantaneous rotation vector i

k


of the solid relative to Ri. 

We consider a point A   (S). Let (π) be a normal plane n


containing point A such that the rotation speed 

of the solid is parallel to n


: i

k


= i

k


n


 . The velocity vector of point A  (π) can be decomposed into two 

vectors, one in the plane (π) and the other perpendicular to (π), which gives: 

)()()( AVAVAV nt


 with )()()()(   AVetAV nt


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Figure III.9: Instantaneous axis of rotation 

From what has been developed on the torsors, it is possible to find a P point such as: PAAV i

kt 


)(  

then the expression of the speed of point A will be written: 

PAAVAV i

kn 


)()(  

Whatever Q  (π) we can write by the transport formula: 

PQAVAQPAAVAQAVQV i

kn

i

k

i

kn

i

k 


)()()()(  

PQAVQV i

kn 


)()(  

We can conclude that the velocity vector of the point Q   (π) is written: 

)()()( QVQVQV nt


  

With PQQV i

kt 


)(  and )()( AVQV nn


  

It can be seen that the velocity component, normal to the plane (π) is the same for all points of the solid. 

We finally get whatever P and Q: 

PQAVQV i

kn 


)()(  

The motion of the solid in this case decomposes at each moment into a motion of translation in the plane 

and a motion of rotation around an axis passing through the point P and parallel to the unitary vector n


. 

The axis thus defined by the point P and the unit  n


// i

k


constitutes the instantaneous axis of rotation of 

the solid with respect to the frame Ri. 

We know that the central axis of a torso is the place of the points P where the moment is minimum or 

zero. In the case of a kinematic torsor, the instantaneous speed is zero at all points of the central axis. We 

deduce that if the speed is zero, in two distinct points of a solid, then the axis joining the two points is 

necessarily an axis of rotation so a central axis of the kinematic torsor. 
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III.9 Laws of Composition of motion 

III.9.1 Law of Composition of Velocities 

Consider Ri ),,,( iiii zyxO


 a fixed reference frame and Rk ),,,( kkkk zyxO


 a reference frame moving 

arbitrarily with respect to the fixed frame. We consider a solid (Sk) whose motion is known in the relative 

frame Rk ),,,( kkkk zyxO


. 

Let P be a point on the solid. We can write at any moment: 

POOOPO kkii   

The velocity of point P in the frame Ri is given by the derivative of the vector POi in the same frame. 

dt

POd

dt

OOd

dt

POd
PV k

i

ki

i

i

i
i )(


 

Developing the two terms of velocity gives: 

)( k

iki

i

OV
dt

OOd 
 : velocity of the center of the frame Rk with respect to the frame Ri. 

POPVPO
dt

POd

dt

POd
k

i

k

k

k

i

k
k

k

k

i




)(  

Finally, the velocity of point P in the frame Ri is written as: ))(()()( POOVPVPV k

i

kk

iki 


 

This can also be written in the form: )()()()( PVOVPVPV i

kk

iki


  

where: 

)(PV i


: Absolute velocity of point P for an observer in Ri 

)(PV k


: Relative velocity of point P with respect to Rk moving with respect to Ri  

)(PV i

k


: transport velocity of point P if it were stationary in Rk. 

Note: 

)()( PVPV k

i

i

k


 : Antisymmetric with respect to the indices, and thus to the reference frames. 

)()()( PVPVPV i

j

j

k

i

k


  
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III.9.2 Law of Composition of Accelerations  

The absolute acceleration )(Pi of point P is derived from the absolute velocity: 

dt

POd

dt

OVd

dt

PVd

dt

PVd
P k

i

k

i

k

iikiii
i 




 ()()()(

)(  

Developing each of the three terms:  

1. )()()(
)()(

PVPPV
dt

PVd

dt

PVd ki

k

kki

k

kkii 


   ; 

2. )(
)(

k

ik

ii

O
dt

OVd





  ;  

3. 
dt

POd
PO

dt

d

dt

POd k

i
i

kk

i

k

i

k

i

k

i





 


)(

 

))((

)(
)(

POPVPO
dt

d

PO
dt

POd
PO

dt

d

dt

POd
PO

dt

d

dt

POd

k

i

k

ki
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i

k

i

k

i

k
k

k
i

kk

i

k

i

k

i
i

kk

i

k

i

k

i

k

i
























 

Summing the three terms gives:  

))(()()()()( POPVPO
dt

d
OPVPP k

i

k

ki

kk

i

k

i

k

iki

k

ki 







  

)(2)()()()( PVPOPO
dt

d
OPP ki

kk

i

k

i

kk

i

k

i

k

iki





















   

This expression can be written in a reduced form: 

)()()()( PPPP c

i

k

ki 


  

where: 

)(Pi


: Absolute acceleration of point P (with respect to fixed Ri) 

)(Pk


: Relative acceleration of point P (with respect to frame Rk) 

)()()( POPO
dt

d
OP k

i

k

i

kk

i

k

i

k

ii

k 







 : Transport acceleration of frame Rk 

)(2)( PVP ki

kc


 : Coriolis acceleration (complementary acceleration). 
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The Coriolis acceleration is a composition between the rotational velocity i

k


 of the frame Rk with respect 

to the frame Ri and the relative velocity )(PV k


 of point P. 

The Coriolis acceleration of point P is zero if and only if: 

 The rotational velocity of the relative frame with respect to the absolute frame is zero: 0


i

k
; 

 The relative velocity of point P is zero: 0)(


PV k ; 

 The rotational velocity is collinear with the relative velocity: i

k


// )(PV k


. 

III.10 Fundamental Particular Motions  

III.10.1 Pure Translation motion 

A solid (Sk) linked to a frame Rk ),,,( kkkk zyxO


is said to be in pure translation motion with respect to a 

frame Ri ),,,( iiii zyxO


 if the axes of Rk ),,,( kkkk zyxO


 maintain a fixed direction with respect to those of 

Ri ),,,( iiii zyxO


 over time. 

All points of the solid have the same velocity and the same acceleration as point P∈ (Sk). 

The rotational velocity of the solid is zero with respect to Ri. 

We can write: )()( k

ii OVPV


   and 0


 POk

i

k  

Since 0


POk   , then 0


i

k
. 

In this case, the velocity field is a uniform field. 

The kinematic screw describing pure translation motion is a zero-couple screw with a resultant that is 

zero but a non-zero moment. 

 









0)()(

0
/ 



QVPV
C

ii

i

k
ik  

Since all points of the solid have the same velocity at each moment, the points describe parallel 

trajectories. Three types of trajectories can be described: Let P and Q be two points of the solid: 

If the trajectories of the solid's points are rectilinear, it is called rectilinear translation. If their respective 

velocities are constant over time, we have uniform rectilinear translation. 

 

Curvilinear translation trajectory: points P and Q have parallel and equal velocities. 
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Circular translation trajectory: points P and Q describe circles of the same radius at the same velocity. 

 

III.10.2 Pure Rotation motion around an Axis of the Solid  

III.10.2.1 Velocity of a Point P on the Solid  

A solid (Sk) linked to a frame Rk ),,,( kkkk zyxO


 is said to be in pure rotation motion with respect to a 

frame Ri ),,,( iiii zyxO


 if an axis of Rk ),,,( kkkk zyxO


 remains fixed at all times and permanently in the 

frame Ri ),,,( iiii zyxO


. Thus, we have two distinct points Ok and I on the solid (Sk) that remain fixed in 

the frame Ri ),,,( iiii zyxO


 during the rotation motion. 

The frame Rk ),,,( kkkk zyxO


is in pure rotation with respect to the frame Ri ),,,( iiii zyxO


 at an angular 

velocity given by: ki

i

k zz








..     et 0)(


k

i OV  

Let P be any point on the solid not belonging to the rotation axis such that: kxrIP


  

 

Figure III.10: Velocity of a Point P on the Solid 

Whatever : izI


 et kz


 We can write: IOOVIV k

i

kk

ii 


)()(  

Thus, we get: 0//


 IOIO k

i

kk

i

k where 0)()(


 k

ii OVIV  
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I and P are two points of the solid, we can then write:  

IPIPIVPV i

k

i

k

ii 


)()( ⇒ IPPV i

k

i 


)(  

We replace i

k


and IP by their expressions, the speed of the point P 

becomes: 

kkk

i

k

i yrxrzIPPV







  .)(  

In pure rotation motion, the velocity screw is equivalent to the sliding 

screw defined by:  









0)(

0
/ 



IV
C

i

i

k
ik  with izI


 and kz


  

III.10.2.2 Acceleration of a Point P on the Solid  

We previously found the velocity of point P given by: IPPV i

k

i 


)(  

By deriving this expression, we get:  

dt

IPd
IP

dt

d

dt

PVd
P

i
i

k

i

k

iii








 )(

)(  yet we have IP
dt

IPd

dt

IPd i

k

ki




such as cstIP   in the 

reference Rk then 0



dt

IPd k

 Which give IP
dt

IPd i

k

i




 

Expanding this expression, we obtain: )()( IPIP
dt

d
P i

k

i

k

i

k

i









  

But we have: IPi

k 


⇒ 0.  IPi

k


et ². i

k

i

k

i

k 


 

Finally, the acceleration expression becomes:  

)(P


    ². i

kIP


   +  IP
dt

d i

k

i





 

where: 

 ². i

kIP


: Normal acceleration along the direction. 

 IP
dt

d i

k

i





: Tangential acceleration at point P. 

Replacing k

i

k z





. , kxrIP


  and k

i

k

i

z
dt

d 







 by their respective expressions: 

)()(².)( PPyrxrp tnkk

i 








  
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Expressions of speed and acceleration can be easily expressed in the Ri ),,,( iiii zyxO


 frame by 

determining the matrix of passage from the Ri frame to the Rk: 
ik RRP  . 

iiik

iiik

iiik

zyxz

zyxy

zyxx













.0.0

.0cossin

.0sincos





 

Where 



















100

0cossin

0sincos





ik RRP  

Speed and acceleration will be expressed in Ri: 

iiiik

i yrxryxryrPV













 cossin)cossin()(   

)cossin()sin²(cos²)( iiiikk

i yxryxryrxrP













   

ii

i yrxrP








)cossin²()sincos²()(    

III.10.3 Helical motion (Rotation + Translation)  

A solid (Sk) linked to a frame Rk ),,,( kkkk zyxO


 describes helical motion with respect to a fixed frame 

Ri ),,,( iiii zyxO


if: 

An axis of the frame Rk ),,,( kkkk zyxO


 remains coincident at all times with an axis of the frame 

Ri ),,,( iiii zyxO


. 

The coordinate of point Ok, the center of the frame Rk ),,,( kkkk zyxO


, along the coincident axis is 

proportional to the rotation angle of frame Rk ),,,( kkkk zyxO


 with respect to the frame Ri ),,,( iiii zyxO


 

during the rotation motion. 

Thus, we have: kiki ztztOO


)()(    

The scalar λ represents the pitch of the helical motion along the coincident axis. 

We have two superimposed motion: 

 A translation motion along the common axis ki zz


 . 

 A rotation motion around the same axis ki zz


 . 
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Application Exercises 

Exercise 01: 

A material point moves along a trajectory described by the following parametric equations: 















0

²2

z

ty

tx

 

Determine: 

1. The unit tangent vector 


to the trajectory; 

2. The radius of curvature ρ; 

3. The normal n


 to the trajectory; 

4. The binormal b


. 

Solution 01: 

1. Unit Tangent Vector


 to the Trajectory 

The unit tangent vector


 has the same direction and sense as the velocity vector 
v

v




 .  

The velocity is written as: 

















 jtiv

v

tv

v

v

z

y

x 
4

0

4

1

and 4

0

4

0
















 









z

y

x


 

And ²161222 tvvvv zyx 


 

Thus: T j
t

t
i

tt

ji

v

v 







²161

4

²161

1

²161

4










  

2. Radius of Curvature ρ 

In the Frenet frame, the acceleration of the material point is written as: tN 


   

Where N


 and t


 are the tangential and normal accelerations, respectively. 

We know that: 



²v

N 


 Calculating N


,  

Such as 
²161

16
²)161(32

2

1 1
2

1

t

t
tt

dt

dv
t









 and that tN ²²²    

We find: 
²161

16

²161

16

²161

²16
16²²²

ttt

t
NtN








   
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4

²)161(
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4

²161² 2
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t

t

tv

N










  

3. Normal to the Trajectory n


 

Let s be the arc length. The normal to the trajectory is given by: 

dt

d

vds

dt

dt

d

ds

d

d

ds

ds

d

d

d
n

















  ; 

dt

ds
v   

Since: 
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

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
  

4. Binormal 

It is a unit vector perpendicular to both the tangent and normal vectors: nb


  














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
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

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
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 ; 



















1

0

0

b


 

Exercise 02: 

Consider the mechanical system composed of a rod O2 of length L and a rectangular plate of dimensions 

2a and 2b hinged at O2 with the rod (see figure). R0 being the fixed frame; R1 rotating by Ψ around the 

axis 0z


. The plate rotates around the rod at an angular velocity . 

Given:  = Cte ;  = Cte ;   = Cte  

Determine: 

1. The transformation matrices from R1 to R2 and from R3 to R2; 

2. The instantaneous rotation vector of R3 relative to R0 expressed in R2; 

3. The velocity )( 2

0 OV


expressed in frame R2 by differentiation; 

4. The velocity )(0 AV


with respect to R0 expressed in R2 by the solid's kinematics; 

5. The acceleration expressed )( 2

0 O


in frame R2 by differentiation and by the solid's kinematics. 
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Solution 02: 

The rod: OO2=L; The plate: Length 2a, Width 2b 

),,,( 0000 zyxOR


: Fixed frame;  

),,,( 1111 zyxOR


: Frame rotating around the axis 0z


 relative to R0;  

),,,( 2222 zyxOR


: Frame attached to the rod rotating around the axis
1y


 relative to R1;  

),,,( 3333 zyxOR


: Frame attached to the plate rotating around the axis
2z


 relative to R2; 

Given:  = Cte ;  = Cte ;   = Cte 

1.Transformation Matrices 

Transformation matrix from R2 to R1: 
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

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
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
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
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21 RRP   

Transformation matrix from R3 to R2:  
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














































2

2

2

3

3

3

100

0cossin

0sincos

z

y

x

x

x

x

















 

23 RRP   

2. Instantaneous Rotation Vector of R3 Relative to R0 Expressed in R2 



Chapter III: Kinematics of the Rigid Body 

 
75 

According to Chasles' theorem, we can write:  

122

0

1

1

2

2

3

0

3 ... zyz








   

Expressing the unit vector 
1z


in frame R2, we get: 221 cossin zxz


   

2222222

0

3 )cos(.sin)cossin(.. zyxzxyz
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
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3. )( 2

0 OV


Velocity Expressed in Frame R2 by Differentiation 

By differentiation: 2

0
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4. Velocity of Point A with Respect to R0 Expressed in Frame R2 

By the solid's kinematics, we write: AOOVAV 2

0

32

00 )()( 


 

Point A is in frame R3 with coordinates: 
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Where 
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5. Acceleration by Differentiation and by the Solid's Kinematics in Frame R2R_2R2 

5.1. By Differentiation 

We know: θ = Cte ;  = Cte ;   = Cte. 
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This gives:  
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5.2. By the Solid's Kinematics 
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d
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Points O and O2belong to the rod; their velocities and accelerations are zero in the frame R2 attached to 

the rod:  

0)(0


O  Because the point O is fixed in the rod 
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Summing these three expressions gives: 
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Chapter III: Kinematics of the Rigid Body 

III.1 Introduction 

A rigid body is an idealization of a body that does not deform or change shape. Formally it is defined as a 

collection of particles with the property that the distance between particles remains unchanged during the 

course of motions of the body. Like the approximation of a rigid body as a particle, this is never strictly 

true. All bodies deform as they move. However, the approximation remains acceptable as long as the 

deformations are negligible relative to the overall motion of the body. 

Kinematics of rigid bodies: relations between time and the positions, velocities, and accelerations of the 

particles forming a rigid body. 

 

III.2 Fundamental Assumptions 

To study the motion of a material point P, or more generally a system of particles or solids, an observer 

must identify their position: 

 In space; 

 In time. 

In classical kinematics, it is assumed that: 

 space is Euclidean (three-dimensional); 

 Time is absolute (independent of the observer). 

III.3 Reference Frames 

To fully study kinematic motion, the observer must define: 

 a spatial reference frame linked to the observer with an origin O and an orthonormal basis ( i , j , k

) forming the trihedron (O, i  , j  , k ), which fully defines the spatial reference frame; 

 a time reference (time scale) with an origin and a unit of measurement. In the MKSA system, the 

second is the unit of time. 

The spatial reference frame and the time reference together define the <space-time> reference frame 

noted as (R). In this frame, at a given moment by the clock, the position of a point r (t) is defined by its 

coordinates x (t), y (t), z (t) such that: 

ktzjtyitxOr )()()(   

The position of point P is known instantaneously in both space and time. 

III.4 Motion Relative to Translating Axes 

III.4.1 Trajectory 
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Let point M be identified in a fixed reference frame R (O, i , j , k  ). Its position is given at each instant t 

by the vector (Figure III.1): 

ktzjtyitxOMtr )()()()(  ,  

The vector )(tr  has components in the fixed reference frame at instant t.  
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tz
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tr  

 

Figure III.1: Trajectory of a point 

The displacement of point M in space is given by the parametric equations of coordinates (x, y, z) as 

functions of time. By eliminating the time parameter, we obtain the trajectory described by this point in 

space. 

)(tr = M(t): position of point M in R (O, i , j , k  ) at instant t. 

)( ttr  =M(t+Δt): position of point M in R (O, i , j , k ) at instant t+Δt.  

The displacement vector from )(tr to )( ttr   is given by Δ )(tr = )( ttr  - )(tr . 

The positions occupied by point M in space describe a trajectory (Γ) with respect to the chosen reference 

frame R (O, i , j , k  ). 

III.4.2 Velocity Vector 

The material point moves from position M(t) to position M(t+Δt) during the time interval Δt at an average 

speed: 

t

tr

t

trttr

t

MM
Vm














)()()('
 

The instantaneous velocity vector is obtained when: Δt →0, defined as: 

t

trd

t

tr
VV

t
m

t 









)()(
limlim

00
 

This vector is always tangent to the trajectory and directed in the direction of motion. 
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III.4.3 Acceleration Vector 

The derivative of the velocity vector in the same reference frame R (O, i , j , k  ) gives the instantaneous 

acceleration of point M: 

t

tV

t

tVttV
m











)()()(
  

The instantaneous acceleration is: 

²

)(²)()(
limlim

00 dt

trd

t

tVd

t

tV

t
m

t











  

The two kinematic vectors help to understand the nature of the motion and to predict the different phases, 

depending on whether the velocity vector is in the same or opposite direction to the acceleration vector. 

III.7 Kinematics of the Rigid Body 

A perfect rigid body (S) is a set of material elements whose mutual distances do not vary over time. 

Consequently, the velocities between these points are not independent. Hence, the kinematics of the rigid 

body deals with the distribution of velocities of points within a body independently of the causes that 

generated the motion of the solid. 

The mechanics of solids allow us to study the behavior of solids and determine all the kinematic 

parameters of all its points regardless of the nature of the motion. The transport formula allows, by 

knowing the speed of a single point of the solid, to easily deduce the speed of all points of the solid. The 

objective of the kinematics of the solid is to know the position, speed, and acceleration of all points of the 

solid relative to a determined frame of reference. 

III.7.1 Concept of Frames and Reference Systems 

To study the motion of a solid or a system composed of several solids, it is essential to locate the position 

of each point as well as the kinematic vectors in space and time. In classical kinematics, we consider that 

space is three-dimensional Euclidean and time is absolute and independent of the observer. To locate the 

solid, the observer defines: 

 A spatial frame defined by an origin O and an orthonormal basis ),,( 000 zyx


. The trihedron ),,,( 000 zyxO


 

completely defines the spatial frame in which the coordinates of all points of the solid can be expressed. 

 A time frame (also called a time scale) with an origin and a time unit.  

In the MKSA system, the unit of time is the second. 

These two frames define a space-time frame called a reference frame or simply a frame in classical 

kinematics. We then choose an arbitrary point Os on the solid. The position of this point is given at each 

instant by the position vector sOO  expressed in the frame R ),,,( 000 zyxO


. The coordinates of the point Os 

depend on time and allow us to know at any moment the position of the frame R ),,,( sss zyxO


 linked to 

the solid. The transition from the frame R ),,,( 000 zyxO


 to the frame R ),,,( sss zyxO


 linked to the solid is 

determined by the transition matrix, which expresses the unit vectors ),,,( 000 zyxO


 in terms of the unit 
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vectors ),,,( sss zyxO


. This transition matrix is expressed in terms of Euler angles. The orientation of the 

frame linked to the solid is independent of the choice of the point Os. 

The set of translation and rotation parameters constitute the situation parameters or degrees of freedom of 

the solid in space relative to the frame R ),,,( 000 zyxO


. If the number of parameters is equal to 6 (3 

rotations and 3 translations), the solid is said to be completely free in R ),,,( 000 zyxO


. If the number of 

parameters is less than 6, the solid is said to be constrained or subjected to constraints where certain 

parameters do not vary over time. 

III.7.2 Notation Systems 

In the study of kinematics, we adopt the following notation:  

Let Ri ),,,( iii zyxO


 be a frame linked to the observer and P a point of the solid: 

 POi : Position vector of point P relative to frame Ri; 

 
dt

POd
PV i

i
i )(


: Speed of point P relative to frame Ri; 

 
dt

PVd
P

ii
i )(

)(




 : Acceleration of point P relative to frame Ri. 

The kinematic parameters are always linked to the frame. The kinematic parameters (velocity and 

acceleration vectors) of the points of the solid are studied in a frame Ri ),,,( iii zyxO


linked to the observer. 

This frame is called the study frame.  

The components of the velocity )(PV i


 and acceleration vectors )(Pi


 being measured and defined in the 

frame Ri ),,,( iii zyxO


, we can know their components in any frame of space Rp ),,,( PPP zyxO


, which we 

will call the projection frame. 

Choosing this projection frame allows us to express the kinematic parameters with simpler mathematical 

expressions. It is often interesting to choose the projection frame different from the study frame to 

simplify and reduce calculations. The projection frame being mobile relative to the study frame, care must 

be taken during derivations as the unit vectors of the projection frame change direction and this must be 

accounted for. 

III.7.3 Motion of a Frame Rk Relative to a Frame Ri Linked to the Observer 

Let Ri ),,,( iiii zyxO


 be a frame linked to the observer and Rk ),,,( kkkk zyxO


 a frame in any motion 

relative to the first. Any point in space can be completely located in Rk and its components deduced in Ri 

or conversely by knowing the motion of Rk relative to Ri. The motion of the frame Rk is completely 

known if: 

 The position of its center Ok is completely known in Ri; 

 The orientation of the axes of Rk is known relative to those of Ri. 

III.7.3.1 Location of the Center Ok of the Frame Rk 
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The location of the center point Ok of the frame Rk is determined by the components of the vector kiOO  

linking the two centers of the frames in Ri or Rk, which results in the following relations:  

In 








iki

iki

iki

R

i

zOO

yOO

xOO

R

i







.

.

.

:  In 








kki

kki

kki

R

k

zOO

yOO

xOO

R

k







.

.

.

:  

III.7.3.2 Formula for the Mobile Basis 

Let Ri ),,,( iiii zyxO


 be a fixed frame and Rk ),,,( kkkk zyxO


 a frame mobile relative to the first. The unit 

vectors of the frame Rk are orthogonal to each other and have constant modules equal to 1, but they 

change direction in space. 

1 kkk zyx


and 0. kk yx


, 0. kk zx


,  0. kk zy


 

So we have: ;k

i

k
k

i

x
dt

xd 

  ;k

i

k
k

i

y
dt

yd 

  k

i

k
k

i

z
dt

zd 

  

III.7.3.3 Derivative in the Frame Ri of a Vector Expressed in a Frame Rk 

The vector )(tV


can be written as kkkkkk zZyYxXtV


)( in the frame Rk.  

Its derivative in the frame Rk is expressed as: kkkkkk

k

zZyYxX
dt

tVd 



)(

 

Its derivative in the frame Ri is written as:  

k

i

kkk

i

kkk

i

kk

ki

zZyYxX
dt

tVd

dt

tVd 



)()(

 

)(
)(

(
)()(

tV
dt

tVd
zZyYxX

dt

tVd

dt

tVd i

k

k

kkkkkk

i

k

ki 





  

Finally, we obtain: )(
)()(

tV
dt

tVd

dt

tVd i

k

ki 


  

III.7.3.4 Properties of the Vector 
i

k


 

a) The vector 
i

k


 is antisymmetric with respect to indices i and j: 
i

k


=-
k

i


 

b) Chasles' formula: 
i

k


 =
j

k


 +
i

j


 (principle of composition) 

c) 
dt

d

dt

d i

k

ki

k

i 





Equality of derivatives with respect to indices. 
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III.7.4 Transition Matrix (Type 1 Euler Angles) 

Let Ri ),,,( iiii zyxO


 be a fixed frame and Rk ),,,( kkkk zyxO


 a frame linked to the solid (S) in any motion 

in space. The center Ok of the frame Rk belongs to the solid Ok  (S). In the case of type 1 Euler angles, 

we consider that the centers Oi and Ok of the two frames are coincident: OiOk, which means that the 

frame Rk only undergoes rotations relative to the frame Ri. Three independent parameters are necessary to 

completely define the orientation of the frame Rk relative to that of Ri. 

The transition from frame Rk to frame Ri is achieved by three rotations using two intermediate frames R1 

and R2. 

III.7.4.1 Transition from Frame R1 to Frame Ri: (the yaw rotation) 

The rotation is performed around the axis 1zzi


 . 

We transition from frame Ri ),,,( iiii zyxO


 to frame R1 ),,,( 1111 zyxO


 by rotating by an angle ψ: called the 

precession angle. The rotation speed is given by: 

11 zzi

i 






  Because iz


 is confused with 1z


 

The representation is done by plane figures from which we construct 

the transition matrices. Thus, we have: 

iii

iii

iii

zyxz

zyxy

zyxx













.0.0

.0cossin

.0sincos

1

1

1





 

These three equations can be written in matrix form, and we obtain: 


















































i

i

i

z

y

x

z

y

x













.

100

0cossin

0sincos

1

1

1





 



















100

0cossin

0sincos

1




iRRP This is the transition matrix from frame R1 to frame Ri.  

The transition matrix from Ri to R1 is equal to the transpose of the above matrix
iRRP 1
 : i

i
RR

T

RR PP  
1

1
. 

III.7.4.2 Transition from Frame R2 to Frame R1: (the pitch rotation) 

The rotation is performed around the axis 21 xx


 . 

We transition from frame R2 ),,,( 2222 zyxO


 to frame R1 ),,,( 1111 zyxO


 by rotating by an angle θ: called the 

nutation angle. The rotation speed is given by: 
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21

1

2 xx



   

21

1

2 xx



   Because 

1x


 is confused with
2x


 

Thus, we have: 

i

i

i

zyxz

zyxy

zyxx











cossin.0

sincos.0

.0.0

111

112

112







 

In matrix form we get:                                                                               


















































i

i

i

z

y

x

z

y

x













.

100

0cossin

0sincos

1

1

1





 



















100

0cossin

0sincos

1




iRRP  This is the transition matrix from frame R2 to frame R1  

III.7.4.3 Transition from Frame Rk to Frame R2: (the roll rotation) 

The rotation is performed around the axis kzz


2 . 

We transition from frame Rk to frame R2 by rotating by an angle 

φ: called the proper rotation angle. The rotation speed is given 

by: 

kk zz







  2

2
 Because iz


 is confused with 1z


                                                     

Thus, we have: 

222

222

222

.0.0

.0cossin

.0sincos

zyxz

zyxy

zyxx

k

k

k

















 

In matrix form we get:                                                                               


















































2

2

2

.

100

0cossin

0sincos

z

y

x

z

y

x

k

k

k
















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

















100

0cossin

0sincos

2




RRk
P  This is the transition matrix from frame Rk to frame R2 

The passage from the Rk reference to the Ri reference or vice versa is done by three successive rotations 

such that all the axes of Rk occupy positions different from that of Ri. The transition matrix from Rk to Ri 

is given by the product of the three successive matrices, we obtain: 
























































i

i

i

k

k

k

z

y

x

z

y

x













.

coscossinsinsin

sincoscoscoscossinsincoscossincossin

sinsincoscossinsincossincossincoscos







 

The transition matrix from Ri to Rk is given by the transpose of the latter. 

The instantaneous rotation vector of the reference frame Rk with respect to Ri will have the vector 

expression: 

21 zxzi

i

k








   

It will have a different expression depending on whether it is written in one or the other of the two 

markers. 

In Ri, we will have: 





























cos

sincossin

cossinsin

iR

i

k    

In Rk, we will have: 






















cos

sincossin

cossinsin








kR

i

k  

This instantaneous rotation vector allows deducing the speed of all the solid points by knowing the speed 

of a single point belonging to the solid. 

III.8 Fields of Velocity and Acceleration of a Solid  

Consider a fixed reference frame Ri ),,,( iiii zyxO


and a solid (Sk) linked to a moving reference frame Rk

),,,( kkkk zyxO


 in space. For any point on the solid (Sk), we can associate its position vector, thus its 

velocity vector and acceleration vector. 

Consider two points Ak and Bk belonging to the solid (Sk). We will seek a relationship between their 

velocities and their accelerations. 

 

 



Chapter III: Kinematics of the Rigid Body 

 
54 

III.8.1 Velocity Fields 

The solid (Sk) is non-deformable, so the distance CteBA kk   remains constant over time in both reference 

frames. This vector will be expressed differently in Ri and Rk. The velocities of points AK and Bk are 

different because the solid has arbitrary motion. 

 

Figure III. 7: Velocity fields 

In reference frame Ri: CteAOBOBABAAOBO kikikkkkkiki   

In reference frame Rk: CteAOBOBABAAOBO kkkkkkkkkkkk   

From these two expressions, we can deduce a relationship between the velocities of the two points 

belonging to the solid. 

The velocities of the two points with respect to the reference frame Ri are given by:  

dt

AOd
AV Ki

i

k

i )(


and 
dt

BOd
BV Ki

i

k

i )(


 

These two expressions can be written as:  

ki

i

k
Ki

k

Ki

i

k

i AO
dt

AOd

dt

AOd
AV 


)( ………….(1) 

ki

i

k
Ki

k

Ki

i

k

i BO
dt

BOd

dt

BOd
BV 


)( ………….(2) 

By subtracting the two expressions (2) - (1):  

)(
)(

)()( kiki

i

k
KiKi

i

k

i

k

i AOBO
dt

AOBOd
AVBV 





 

We know that: 0
)(




dt

BAd

dt

AOBOd kk

i

KiKi

i

 because kkkiki BAAOBO   
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Thus, we obtain the distribution relationship of velocities in a solid: )()()( kk

i

kk

i

k

i BAAVBV 


 

This relationship is of great importance in the kinematics and dynamics of solids. It allows us, from the 

velocity of one point of the solid, to deduce the velocity of all other points of the solid by knowing the 

rotational velocity of the associated reference frame. 

Note: 

a) If the rotation vector is zero 0 i

k , then the solid is in pure translation motion, and all points of the 

solid have the same velocity: )()( k

i

k

i AVBV


 ; 

b) If 0)( k

i AV


and )()( kk

i

kk

i BABV 


, the solid is in pure rotational motion around the point 

)( kk SA  ; 

c) The general motion of a solid can be described as a composition of a translation motion of point 

)( kk SA   at velocity )( k

i AV


and a rotational motion around point )( kk SA   at rotational velocity i

k . 

III.8.2 Equiprojectivity of the Velocity Field of a Solid  

We can demonstrate it in two different methods.  

a) Previously, we showed that: )()()( kk

i

kk

i

k

i BAAVBV 


 

 

Figure III.8 : Equiprojectivity of the velocity field 

By multiplying this expression by the vector kk BA , we obtain:  

).()(.)(. kk

i

kkkk

i

kkk

i

kk BABAAVBABVBA 


 

By circular permutation of the mixed product, we can easily see that the expression:  

0).().(


 kkkk

i

kkk

i

kkk BABABABA  
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Thus, we obtain the equality: )(.)(. k

i

kkk

i

kk AVBABVBA


   

(Property of Equiprojectivity of the Velocity Field of the Solid) 

b) This expression can be found another way. The solid is non-deformable, and the distance kk BA  is 

constant, thus:  

0
)²(


dt

BAd kk  

02
)²(


dt

BAd
BA

dt

BAd kk
kk

kk  

0))()((2  k

i

k

i

kk AVBVBA


From where: )(.)(. k

i

kkk

i

kk AVBABVBA


  

This equiprojectivity property implies the existence of a free vector i

k


 such that: 

)()()( kk

i

kk

i

k

i BAAVBV 


which allows us to introduce the notion of kinematic screw. 

III.8.3 Acceleration Fields  

For each point of the solid (Sk) linked to the reference frame Rk, we deduce the acceleration from the 

velocity using the relation: 
dt

AVd
A k

ii

k

i )(
)(




  

We will find a relationship linking the accelerations: )( k

i A


 and )( k

i B


. 

We have already established a relationship between the velocities of the two points: 

)()()( kk

i

kk

i

k

i BAAVBV 


 

We deduce the relationship between the accelerations by differentiating the expression of velocities.  

dt

BAd
BA

dt

d

dt

AVd

dt

BVd
B kk

i
i

kkk

i

k

i

k

ii

k

ii

k

i 






 )()(

)(  

And since: kk

i

kkk

i

k
kk

k

kk

i

BABA
dt

BAd

dt

BAd



because 0




dt

BAd kk

k

 

Finally, we obtain the relation between the accelerations of the two points Ak and Bk of the solid: 

)()()( kk

i

k

i

kkk

i

k

i

k

i

k

i BABA
dt

d
AB 








  

We observe that if the rotational velocity is constant 0


i

k , the expression becomes:  

)²()()()()( i

kkkk

i

kk

i

k

i

kk

i

k

i BAABAAB 


  
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III.8.4 Kinematic Screw  

The distribution formula of velocities is given by the relation: )()()( kk

i

kk

i

k

i BAAVBV 


 

The transport formula of moments between two points Ak and Bk of the solid is expressed as: 

kkkk BARAMBM 


)()(  

We note that there is equivalence between these two equations. The velocity vector at point Bk is the 

moment at point Bk of a screw, which we will denote as  
kBC , and the resultant is none other than the 

instantaneous rotation vector i

k


. 

The kinematic screw at point Bk (or the distribution screw of velocities) relative to the motion of the solid 

with respect to Ri has the reduced elements: 

 Instantaneous rotation vector: i

k


 

 Velocity at point Bk: )( k

i BV


 

It will be noted in the form :  









kk

i

kk

i

k

i

i

k
B

BAAVBV
C

k




)()(
 

The kinematic torso is of great interest because it completely characterizes the motion of a solid relative 

to the Ri mark with regard to speeds. As the reduction elements of the kinematic torso are time functions, 

and then the kinematic torso depends on it, so it has at every moment a different result and velocity field.  

III.9 Laws of Composition of motion 

III.9.1 Law of Composition of Velocities 

Consider Ri ),,,( iiii zyxO


 a fixed reference frame and Rk ),,,( kkkk zyxO


 a reference frame moving 

arbitrarily with respect to the fixed frame. We consider a solid (Sk) whose motion is known in the relative 

frame Rk ),,,( kkkk zyxO


. 

Let P be a point on the solid. We can write at any moment: 

POOOPO kkii   

The velocity of point P in the frame Ri is given by the derivative of the vector POi in the same frame. 

dt

POd

dt

OOd

dt

POd
PV k

i

ki

i

i

i
i )(


 

Developing the two terms of velocity gives: 

)( k

iki

i

OV
dt

OOd 
 : velocity of the center of the frame Rk with respect to the frame Ri. 
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POPVPO
dt

POd

dt

POd
k

i

k

k

k

i

k
k

k

k

i




)(  

Finally, the velocity of point P in the frame Ri is written as: ))(()()( POOVPVPV k

i

kk

iki 


 

This can also be written in the form: )()()()( PVOVPVPV i

kk

iki


  

where: 

)(PV i


: Absolute velocity of point P for an observer in Ri 

)(PV k


: Relative velocity of point P with respect to Rk moving with respect to Ri  

)(PV i

k


: transport velocity of point P if it were stationary in Rk. 

Note: 

)()( PVPV k

i

i

k


 : Antisymmetric with respect to the indices, and thus to the reference frames. 

)()()( PVPVPV i

j

j

k

i

k


  

 

 

III.9.2 Law of Composition of Accelerations  

The absolute acceleration )(Pi of point P is derived from the absolute velocity: 

dt

POd

dt

OVd

dt

PVd

dt

PVd
P k

i

k

i

k

iikiii
i 




 ()()()(

)(  

Developing each of the three terms:  

1. )()()(
)()(

PVPPV
dt

PVd

dt

PVd ki

k

kki

k

kkii 


   ; 

2. )(
)(

k

ik

ii

O
dt

OVd





  ;  

3. 
dt

POd
PO

dt

d

dt

POd k

i
i

kk

i

k

i

k

i

k

i





 


)(
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))((

)(
)(

POPVPO
dt

d

PO
dt

POd
PO

dt

d

dt

POd
PO

dt

d

dt

POd

k

i

k

ki

kk

i

k

i

k

i

k
k

k
i

kk

i

k

i

k

i
i

kk

i

k

i

k

i

k

i
























 

Summing the three terms gives:  

))(()()()()( POPVPO
dt

d
OPVPP k

i

k

ki

kk

i

k

i

k

iki

k

ki 







  

)(2)()()()( PVPOPO
dt

d
OPP ki

kk

i

k

i

kk

i

k

i

k

iki





















   

This expression can be written in a reduced form: 

)()()()( PPPP c

i

k

ki 


  

where: 

)(Pi


: Absolute acceleration of point P (with respect to fixed Ri) 

)(Pk


: Relative acceleration of point P (with respect to frame Rk) 

)()()( POPO
dt

d
OP k

i

k

i

kk

i

k

i

k

ii

k 







 : Transport acceleration of frame Rk 

)(2)( PVP ki

kc


 : Coriolis acceleration (complementary acceleration). 

The Coriolis acceleration is a composition between the rotational velocity
i

k


 of the frame Rk with respect 

to the frame Ri and the relative velocity )(PV k


 of point P. 

The Coriolis acceleration of point P is zero if and only if: 

 The rotational velocity of the relative frame with respect to the absolute frame is zero: 0


i

k ; 

 The relative velocity of point P is zero: 0)(


PV k ; 

 The rotational velocity is collinear with the relative velocity: 
i

k


// )(PV k


. 

Application Exercises 

Exercise 01: 

Consider the mechanical system composed of a rod O2 of length L and a rectangular plate of dimensions 

2a and 2b hinged at O2 with the rod (see figure). R0 being the fixed frame; R1 rotating by Ψ around the 

axis 0z


. The plate rotates around the rod at an angular velocity . 
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Given:  = Cte ;  = Cte ;   = Cte  

Determine: 

1. The transformation matrices from R1 to R2 and from R3 to R2; 

2. The instantaneous rotation vector of R3 relative to R0 expressed in R2; 

3. The velocity )( 2

0 OV


expressed in frame R2 by differentiation; 

4. The velocity )(0 AV


with respect to R0 expressed in R2 by the solid's kinematics; 

5. The acceleration expressed )( 2

0 O


in frame R2 by differentiation and by the solid's kinematics. 

 

Solution 01: 

The rod: OO2=L; The plate: Length 2a, Width 2b 

),,,( 0000 zyxOR


: Fixed frame;  

),,,( 1111 zyxOR


: Frame rotating around the axis 0z


 relative to R0;  

),,,( 2222 zyxOR


: Frame attached to the rod rotating around the axis 1y


 

relative to R1;  

),,,( 3333 zyxOR


: Frame attached to the plate rotating around the axis 2z


 

relative to R2; 

Given:  = Cte ;  = Cte ;   = Cte 

1.Transformation Matrices 

Transformation matrix from R2 to R1: 

 



















































2

2

2

3

2

1

cos0sin

010

sin0cos

z

y

x

x

x

x
















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21 RRP   

Transformation matrix from R3 to R2:  


















































2

2

2

3

3

3

100

0cossin

0sincos

z

y

x

x

x

x

















 

23 RRP   

2. Instantaneous Rotation Vector of R3 Relative to R0 Expressed in R2 

According to Chasles' theorem, we can write:  

122

0

1

1

2

2

3

0

3 ... zyz








   

Expressing the unit vector 1z


in frame R2, we get: 221 cossin zxz


   

2222222

0

3 )cos(.sin)cossin(.. zyxzxyz














   





















cos

sin

2

0

3








R

 

3. )( 2

0 OV


Velocity Expressed in Frame R2 by Differentiation 

By differentiation: 2

0

2

2

2

2

0

2

0 )( OO
dt

OOd

dt

OOd
OV 


 









 00

0
2

2

2

2



dt

OOd

L

OO

R

 ; and 



















cos

sin

..

2

12

0

1

1

2

0

2










R

zy  





























0

sin0

0

cos

sin

)(

2
2

2

2

0 









L

L

L

OV

R
R

R








 

4. Velocity of Point A with Respect to R0 Expressed in Frame R2 
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By the solid's kinematics, we write: AOOVAV 2

0

32

00 )()( 


 

Point A is in frame R3 with coordinates: 



















0

sin

cos

0

0

23

2 



a

aa

AO

RR

 

Where 
































0

sin

cos

cos

sin

0

sin)(

222

0 













a

a

L

L

AV

RRR







 

















)cossinsin(

)cos(cossin

)cos(sin

)(

2

0














a

aL

aL

AV

R

 

5. Acceleration by Differentiation and by the Solid's Kinematics in Frame R2R_2R2 

5.1. By Differentiation 

We know: θ = Cte ;  = Cte ;   = Cte. 

)(
)()(

)( 2

00

2
2

02

2

00

2

0 OV
dt

OVd

dt

OVd
O





  

This gives:  



































































²sin²²

cos2

cossin²

0

sin

cos

sin

0

cos

0

)(

2
2

2

2

2

0




















LL

L

L

L

L

LO

R
R

R
R

 

5.2. By the Solid's Kinematics 

)()()( 2

0

2

0

22

0

2

0
0

2

0 OOOO
dt

d
OO 








  

Points O and O2belong to the rod; their velocities and accelerations are zero in the frame R2 attached to 

the rod:  

0)(0


O  Because the point O is fixed in the rod 
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
































0

cos

0

0

0

sin

0

cos

22
2

2

0

2

0













L

L

OO
dt

d

RR
R

 





















²sin²²

cos

cossin²

)(

2

2

0

2

0

2








LL

L

L

OO

R

 

Summing these three expressions gives: 

 


















































²sin²²

cos2

cossin²

²sin²²

cos

cossin²

0

cos

0

)(

222

2

0
















LL

L

L
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L

L
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Chapter V: Dynamics of the Rigid Body 

V.1 Introduction 

Dynamics allows us to analyze the links between the movements described by kinematics and 

the forces or actions that cause them. It examines the concept of force and, more broadly, the 

concept of efforts exerted on any material system. 

The purpose of this chapter is to state the fundamental principle of dynamics and its influence 

on the study of motion. We will also introduce the concept of the wrench of external forces, 

which is necessary for writing the fundamental principle of dynamics. 

V.2 Expression of the Fundamental Law of Dynamics 

Consider a material system (S) that is not isolated, subjected to interactions in a Galilean 

reference frame ),,,( 0000 zyxOR


. For such a system, two types of actions are identified: 

- Internal Mechanical Actions: 

These are the result of one part of (S) acting on another part of (S). These forces are called 

internal forces and are denoted as iFd


. 

- External Mechanical Actions: 

These stem from the interaction of the rest of the universe (the external environment) with 

(S). These forces are called external forces and are denoted as eFd


. 

The proper classification of forces as internal or external depends on appropriately selecting 

the boundary conditions of the system. 

At any arbitrary point M within the system (S), the fundamental relationship of dynamics is 

expressed as: 

dmMFdFd ei )(


  

dm: represents the infinitesimal mass element at M;  

)(M


 : is the acceleration vector at M.    

Summing over the entire material system gives: 

 
SS

e

S

i dmMFdFd )(

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Figure V.1: Mechanical Actions 

At any point A in space, the moments of these forces are given by: 

 
SS

e

S

i dmMAPFdAPFdAP )(


 

We assume that the material system (S) does not exchange matter with other systems and that 

its total mass is constant. 

The external mechanical actions acting on (S) are represented by the torsor [τ]Fext/A , called the 

external forces wrench, whose components at point A are: 

 





Aext

ext
FextA

M

F




  

 extF


: The resultant of the external forces acting on the system (S); 

AextM


 : the moment at point A of the external forces acting on the system (S). 

The fundamental principle of dynamics shows that in any Galilean reference frame, the 

dynamic wrench [D]A of system (S) is equal to the external forces wrench [τ]Fext/A calculated 

at the same point A. 

The components of the dynamic wrench [D]A of system (S) in the Galilean reference 

frame ),,,( 0000 zyxOR


 are:   





A

A

D
D






 

 D


 : The dynamic resultant; 

A


 : The dynamic moment at point A. 

The equality of the two wrenches implies the equality of their components. This principle 

generalizes Newton’s laws. The components of the two wrenches can be calculated 

separately, and the obtained expressions are then equated. 

Point A, with respect to which the moments are calculated, is arbitrary, but its selection 

should facilitate the writing of equations. Often in mechanics problems, the center of mass of 
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the system is chosen because the moment of inertia involved in the calculations is easier to 

determine. 

V.2.1 Theorem of Dynamic Resultant 

Consider a material system (S) in motion in a Galilean reference frame ),,,( 0000 zyxOR


and 

subjected to external actions. The dynamic resultant of the material system (S) is equal to the 

resultant of the external mechanical actions (forces). 

 extFRGmRSD


)/()/( 00   

G: the center of mass of the system. The resultant of the external forces is equal to the mass of 

the system times the acceleration of its center of mass. 

V.2.2 Theorem of Dynamic Moment 

Consider a material system (S) in motion in a Galilean reference frame ),,,( 0000 zyxOR


 and 

subjected to external actions. The dynamic moment of the material system (S) at any point A 

is equal to the moment of the external mechanical actions (forces) at the same point A. 

)/()/( 00 RSMRS AA


  

At the center of mass of the system, this equality can be written as: 

dt

RSd
RSMRS G

GG

)/(
)/()/( 0

00







 

As previously demonstrated, the angular momentum at point G, the center of mass of the 

system, is independent of the reference frame in which it is measured. Therefore, it is often 

simpler to calculate the dynamic moments at the center of mass of the systems. 

Remark: 

The dynamic moment of a composite system is equal to the sum of the dynamic moments of 

its components with respect to the same point. 

V.2.3 Scalar Equations Derived from the Fundamental Principle 

The vector equations of the dynamic resultant and dynamic moment each lead to three scalar 

equations, giving a total of six scalar equations for a given material system. 

The choice of the reference point for expressing the equation of the dynamic resultant and the 

point where the dynamic moment is calculated must be judicious to simplify the mathematical 

writing of scalar equations. 

These scalar equations are second-order differential equations and are generally nonlinear. 

They include the system's inertia characteristics, geometric data, and the components of the 

mechanical actions applied to the system. 
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V.3 Principle of Action and Reaction 

Two arbitrary points A and B in a material system (S) interact, mutually influencing each 

other through actions and reactions (Fig. V.2): 

BAF /



: Action of A on B. 

ABF /



: Action of B on A. 

These two actions balance each other. The principle of action and reaction is expressed as:
 

0//


 ABBA FF  

This equation implies that the forces are collinear along the line joining the two points A and 

B, such that: 
ABF BA /



and BAF AB /


 

0)(//


 ABABBAABFF ABBA 

 

 

Figure V.2: Action and Reaction 

V.3.1 Theorem of Action and Reaction 

Consider two material systems (S1) and (S2) moving in a Galilean reference frame R0. 

Let (S) be the system formed by the union of the two systems: (S) = (S1)   (S2). 

The Toeror of the external forces acting on (S) is decomposed as: 

1
][ Fext : Resultant of the external actions of the environment on S. 

12][ : Resultant of the actions of S2 on S1. 

The torsor of the external forces acting on S2 is decomposed as: 

2
][ Fext : Resultant of the external actions of the environment on S2. 

21][ : Resultant of the actions of S1 on S2. 
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Figure V.3: Resultant of actions  

Applying the fundamental principle of dynamics in the Galilean reference frame R0 to the 

different systems: 

- A (S1) :      1211   FextD  

- A (S2) :      1222   FextD  

- A (S) :       21 FextFextD    

Knowing that:      21 DDD   

The expression represents the theorem of action and reaction. 

                     1221122112221121 0   FextFextFextFext  

This expression reflects the theorem of action and reaction. For the material system (S), the 

relation:      01221    characterizes the internal actions. 

In general, when all the internal mechanical actions within a material system (S) can be 

represented by a wrench [τ]int F, it is always zero. 

V.3.2 Properties of Internal Forces 

The torsor of internal forces has the following components:  









0

0

int

int
int





A

F
M

R
  





1

int 0)(
i

jiij FFR


 

Action-Reaction Forces: jiij FF


  

Moment of Internal Forces: At any point A in space, the moment of internal forces is given 

by: 

  
i i

jijiiijijijijiA FMMAMFAMFAMFAMM ))(()(int


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0))()((int




i

jijijiijiA FMMFFAMM  

Because  0)(


 jiij FF  et 0)(


 jiji FMM  

The torsor of internal forces is always a null wrench:  [τ]F int =0 

V.4 Kinetic Energy Theorem 

In many cases, determining the equation of motion for a rigid body or a system of rigid bodies 

is easier using the kinetic energy theorem, which helps simplify the solution to mechanical 

problems. 

Furthermore, the derivative of kinetic energy is related to the power of both internal and 

external forces acting on the body. 

V.4.1 Work and Power of a Force 

Consider a discrete system composed of n particles Mi of mass mi, moving in a Galilean 

reference frame ),,( zyxR


. Let iOM  be the position vector of the particle Mi in the reference 

frame R. Its velocity vector is: 

 dtMVOMd
dt

OMd
MV ii

i

i )()(


  

 iOMd  : represent the infinitesimal displacement during a time dt.  

If the particle Mi is subjected to a force F


, the infinitesimal work done by this force is: 

iii OMdFdW .


  

The power received by the particle is :   

)(. i

ii

i MVF
dt

OMd
F

dt

dW
P




 

Note that iF


 includes both internal forces intiF


 and external forces iextF


: 

iextii FFF


 int  ;   For the entire system, the total power is:  

 
i

iiexti

i

ii OMdFFOMdFW ).(. int


 

 
i

iiexti

i

ii MVFFMVFP )().()(. int


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V.4.2 Kinetic Energy Theorem 

For a system of n particles Mi with mass mi and velocity )( iMV


, moving in a Galilean 

reference frame ),,( zyxR


, the kinetic energy is: 

 



n

i

iic MVmE
1

2

)(
2

1 
 

The time derivative of this expression is: 





n

i

i

ic MV
dt

MV

dt

dE

1

)(.
)( 



 

The force acting on particle Mi:  
dt

MVd
mF i

ii

)(



 ,     PMVF

dt

dE n

i

ii

c 
1

)(..


 

Since iF


 includes both internal and external forces, this can be written as: 

 ext
c PP

dt

dE
 int  

Pint : power from internal forces;  

Pext : power from external forces.  

The power of the internal and external forces equals the time derivative of kinetic energy. 

Integrating this expression between two instants t1 and t2, the kinetic energy theorem 

becomes: 

 
2

1

)()()( int12

t

t

extcc dtPPtEtE  

extcc WWtEtE  int12 )()(                   

The variation in kinetic energy between two instants t1 and t2 equals the work of all internal 

and external forces applied to the system. 

V.4.3 Kinetic Energy of a Rigid Body 

For a rigid body, the kinetic energy is given by: 


s

c dmMVE )²(
2

1 
 

Let ),,,( 0000 zyxOR


 be a fixed orthonormal frame and ),,,( 1111 zyxOR


 a frame attached to 

the rigid body (S), moving in any manner such that )(1 SO   
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Let 0

1


 be the angular velocity of frame R1 relative to frame R2, and M an arbitrary point of 

the solid. According to the kinematics of the solid, we write: 

MOMVMV 1

0

1

10 )()( 


 

The kinetic energy of the solid (S) in motion relative to a fixed frame R0 is expressed as:

 

 

dmMMVdm
dt

MV
MV

dt

dE

ss

c

  )().(
)(

).( 00
0

0

0







 

dmMMOOV
dt

dE

s

c

  )().)(( 0

1

0

11

0

0




 

Using the permutation rule in the scalar triple product, the expression of Vent: 

dmMMOdmMOV
dt

dE

ss

c )(.)().( 0

1

0

1

0

1

0

0




   

Which can also be written in the form of the product of two torsor: 

  
11

.
)(

)(

.
)( 0

1

0

1

0

0

1

0

OO

s

sc DC
dmMMO

dmM

OVdt

dE












 



















 

The derivative of kinetic energy is equal to the product of the kinematic and dynamic 

wrenches, and thus is equal to the power of the absolute acceleration quantities. 

As we saw earlier, according to the fundamental theorem of dynamics, the dynamic wrench is 

equal to the wrench of external forces for a rigid body, hence the final expression: 

ext

c P
dt

dE
  

V.4.4 Conservation of Total Energy 

The kinetic energy theorem can be written as:  

extextc dWdtPdE   

If all external forces derive from a potential function U(r), independent of time, then: 

)(rUgradFext 


  From this, we deduce:   

)(. rdUrdFdW extext 


 

The kinetic energy theorem becomes: 
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dEc =-dU(r) d(Ec +U)=0 and finely  Ec + U =Cte 

EC  +   U  =  E  ,           E : total energy 

This expression represents the total energy conservation theorem: 
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Application Exercises  

Exercise 1 

A system consists of two masses M and M′ connected by an inextensible cable that passes 

over a pulley of radius R. The mass M′ is suspended vertically, and the mass M slides without 

friction on an inclined plane at an angle α\alphaα. The friction of the cable on the pulley is 

negligible. Write: 

1. The relation between the pulley's angular velocity 


 and the acceleration


of the two 

bodies. 

2. The fundamental principle of dynamics and determine the system's acceleration in two 

cases: 

a) The pulley's mass is negligible. 

b) The pulley's mass is m. 

 

Exercise 2 

A homogeneous bar of length AB=L, mass m, and center G, has one end A resting on a 

smooth horizontal surface, and the other end B sliding along a vertical wall. Initially, the bar 

makes an angle θ0 with the wall. Both ends slide without friction. 

1. Using the theorems of dynamic resultant and dynamic moment, establish the three 

scalar equations of the bar's motion. 

2. Deduce the angular acceleration  from these equations. 

3. Show, by integrating the acceleration equation, that: )cos(cos
3

² 0  
L

g
 

4. Re-derive the above expression ²  using the total mechanical energy conservation 

theorem. 

5. Determine RA and RB (the reactions at A and B) as functions of θ. 
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6. Find the angle at which the bar detaches from the wall. 
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