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Introduction

This handout contains the mathematics II course that I teach in the second semester
of the first year of science and technology. I want to point out the principal mathe-
matics tools of algebra and analysis that a student must assimilate and learn. That
is, this document can be used as a reference text for undergraduates in the first year
in Science and Technology who will be facing mathematics problems and will be inter-
ested in learning techniques to solve them.

The course is divided into five chapters:

Chapter 1: We defined the integral definite and finite, we give properties, and it’s
application.

Chapter 2: We give the application the integral in the differential equations of
the first and second order.

Chapter 3: Contains the notion in matrix.

Chapter 4: We applicated the matrices for solve the linear systems.

Chapter 5: Finaly we study the continuous and derivative, double and triple
integral for multivariable functions.
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Chapter 1

The Integral

1.1 The indefinite integral

Definition 1.1.1.
A function F is called an antiderivative of f on I

iff: ∀x ∈ I, F ′(x) = f(x) and denoted by:

∫
f(x)dx.

Example 1.1.1.

• F1(x) = x2 is an antiderivative of f(x) = 2x on R.

• F2(x) = x2 + 10 is also an antiderivative of f(x) = 2x on R.

Theorem 1.1.1.
If F is antiderivative of f , then:
every function G(x) = F (x) + c ,(c ∈ R) is an antiderivative of f and write:∫

cos(x)dx = sin(x) + c, c ∈ R.

Example 1.1.2.
Since sin is an antiderivative of cos, then:∫

f(x)dx = F (x) + c

Properties 1.1.1.
Just as we had a list of properties the derivatives of sum and products of functions
Let f and g continuous on I, λ ∈ R (constant)
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1.1 The indefinite integral

1.

∫ [
f(x) + g(x)]dx =

∫
f(x)dx+

∫
g(x)dx.

2.

∫
λf(x)dx = λ ·

∫
f(x)dx.

1.1.1 The table of an antiderivatives functions

Function of f

∫
f(x)dx Interval

1) a, a ∈ R ax+b R
2) xn, n 6= −1 xn+1

n+1
+ c R or R∗+

3) 1
x

ln |x| R∗
4) ex ex + c R
5) ax, a > 0 ax

ln(a)
+ c R

6) cos(x) sin(x) + c R
7) sin(x) − cos(x) + c R
8) sinh(x) coshx+ C R
9) cosh(x) sinh(x) + c R
10) 1

1+x2
arctan(x) + c R

11) 1√
1−x2 arcsin(x) + c ]− 1, 1[

12) − 1√
1−x2 arccos(x) + c ]− 1, 1[

1.1.2 The integral of polynomials

We have:

I =

∫
anx

n + an−1x
n−1 + · · ·+ a0dx, an 6= 0

=
an

n+ 1
xn+1 +

an−1

n
xn + · · ·+ a0x+ c.

Examples 1.1.1.

1)

∫
x3dx =

1

4
x4 + c.∫

(x2 + 2x)dx =
1

3
x3 + x2 + c, where c is real constant.

1.1.3 The antiderivatives of the compositives functions

Let U is continuous and differentiable on I and c is real constant.

f(x) u
′ · un, (n 6= −1) u

′

u
u
′
eu u

′
√
u

u
′
cos(u) u

′
sinh(u)∫

f(x)dx un+1

n+1
+ c ln |u|+ c eu + c 2

√
u+ c sin(u) + c cosh(u) + c

7



The Integral

Examples 1.1.2.

1.

∫
tanxdx =

∫
sinx

cosx
dx = ln | cosx|+ c.

2.

∫
(2x− 1)(x2 − x+ 4)20dx =

1

21
(x2 − x+ 4)21 + c.

3.

∫
(x2 + 1) sinh(

1

3
x3 + x− 5)dx = cosh(

1

3
x3 + x− 5) + c, where c is real constant.

1.1.4 Method of substitution

Let u is differentiable on I and F (x) =

∫
f(x)dx. Then:∫

u
′
F
′
(u) = F (u) + c

Examples 1.1.3.

• I1 =

∫
2x+ 1

x2 + x+ 3
dx = lnu+ c, such that u = x2 + x+ 3 > 0.

• I2 =

∫
(4x+ 6)ex

2+3xdx = 2ex
2+3x + c

• I3 =

∫
ex

ex + 4
= ln(ex + 4) + c.

1.1.5 Integration by part

Theorem 1.1.2. If: U , V are differentiable on I.∫
U(x) · V ′(x)dx = U(x) · V (x)−

∫
(U
′
V )(x)dx

Proof:

We have: (U(x) · V (x))
′
= U

′
(x) · V (x) + U(x) · V ′(x), then

(U(x) · V (x))
′ − U(x) · V ′(x) = U

′
(x) · V (x), so

∫
U(x) · V ′(x)dx = U(x) · V (x)−

∫
(U
′
V )(x)dx

Examples 1.1.4.
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1.1 The indefinite integral

1. I1 =

∫
xexdx

We put: U = x, V
′
= ex. Then I1 = xex − ex + c.

2. I2 =

∫
x sin(x)dx

Posons: U = x, V
′
= sinx, then I2 = −xcosx+ sinx+ c.

3.

∫
lnx = x lnx− lnx+ c

Table: Gives some recommended choices for integration by parts.

Integral Choice of U Choice of V

1)
∫
xn cos(kx)dx U = xn V

′
= cos(kx)

2)
∫
xn sin(kx)dx U = xn V

′
= sin(kx)

3)
∫
xnekxdx U = xn V

′
= ekx

4)
∫
xn ln(kx)dx U = ln(kx) V

′
= xn

1.1.6 Integrals Trigonometric functions

We know that:

sin2(x) =
1

2
(1− cos(2x)

cos2(x) =
1

2
(1 + cos(2x)

Integral of type:

I =

∫
sinxn · cosxndx n ∈ N, m ∈ N

Posons: t = sin(x)⇒ cos(x) =
√

1− t2 cos(x) ≥ 0,
by substitution:

Then: dt =
√

1− t2dx, so:

I =

∫
tm · (1− t2)

n−1
2 dt

Examples 1.1.5.

1.

∫
sin2(x) · cos3(x)dx =?

9



The Integral

∫
sin2(x) · cos3(x)dx =

∫
t2 · (1− t2)

3−1
2

=
t3

3
− t5

5
+ c

=
sin3(x)

3
− sin5(x)

5
+ c.

2. Find

∫
sin(x) · cos2(3x)dx

1.1.7 Integrals Exponentials functions

The type I =

∫
f(ex)dx

We suppose that: t = ex ⇒ dt = exdx

I =

∫
1

t
f(t)dt

Example 1.1.3.∫
ex

ex + 2
dx =

∫
1

t
(

t

t+ 2
)dt = ln | t+ 2 | +c = ln(ex + 2) + c.

1.1.8 Integrals Rational functions

A rational function is a quotient of two polynomials: R(x) = P (x)
Q(x)

.

I =

∫
P (x)

Q(x)

If: deg p ≥ deg Q, use long division, then write:

R(x) = R(x) +
P1(x)

Q1(x)
, deg P1 < deg Q1.

Decompose P1(x)
Q1(x)

into partial fractions of the form:

P1(x)

Q1(x)
= F1(x) + F2(x) + · · ·

where: each fraction is of the form:

F2(x) =
A

(x+ b)n
or

Ax+B

(x2 + bx+ c)k
1 ≤ n

10



1.1 The indefinite integral

Calculate partial fractions

• a) I1 =

∫
A

(x+ b)n
dx, n ∈ R∗. If n = 1: I1 = A ln |x+ b|+ c.

Ifn 6= 1: I1 = A
−n+1

(x+ b)−n+1 + c

• b) I2 = Ax+B
(x2+bx+c)n

If n = 1:

I2 =

∫
Ax+B

(x2 + bx+ c)

= A1

∫
u
′

u
+B1

∫
1

u2 − a2
or = A1

∫
u
′

u
+B1

∫
1

u2 + a2

= λ ln |x2 + bx+ c|+ µ arctan(u) or = λ ln |x2 + bx+ c|+ µ ln |u(x)|.

If n 6= 1: I2 = A1

∫
u
′

u
+B1

∫
1

(x2 + bx+ c
)n (By induction)

Examples 1.1.6.

1. I1 =

∫
3

(x− 1)4
dx = −(x− 1)−3 + c.

2. I2 =

∫
1

4 + x2
dx =

1

2
arctan(

x

2
).

3. I3 =

∫
1√

9− x2
dx = arcsin(

x

3
) + c

4. I4 =

∫
x+ 1

x2 − 4x+ 80
dx

I4 =

∫
1

2

(
2x+ 2

(x2 − 4x+ 8)
dx

)
=

1

2

[∫
2x− 4

x2 − 4x+ 8
+

6

x2 − 4x+ 8
dx

]
=

1

2
ln |x2 − 4x+ 8|+ 3

∫
3

(x− 2)2 + 4

=
1

2
ln |x2 − 4x+ 8|+ 3

2
arctan(

x− 2

2
) + c.

Results:
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The Integral

1.

∫
u
′

1 + u2
dx = arctan(u) + c.

2.

∫
1

a2 + u2
dx =

1

a
arctan(u) + c.

3.

∫
1√

a2 − x2
dx = arcsin(

x

a
) + c.

4.

∫
u
′

√
1− u2

dx = arcsin(u) + c.

Example 1.1.4.∫
2x− 7

x2 + x+ 4
dx =

∫ (
2x+ 1

x2 + x+ 4
− 8

x2 + x+ 4
dx

)

1.2 The Definite integral

Definition 1.2.1.
Let f is continuous on [a, b] and F is an antiderivative of f . The definite integral of f
from a to be is: ∫ b

a

f(x)dx = F (a)− F (b) = [F (x)]ba

Examples 1.2.1.∫ π
2

0

cos(2x)dx =
1

2
[sin2x]

π
2
0 = −1

2
.

Remarks 1.2.1.

1. If f(x) > 0 on [a, b]. Then: ∫ b

a

f(x)dx = A(S)

2.

∫ b

a

f(x)dx =

∫ b

a

f(t)dt

Properties 1.2.1.
Let f , g are continuous on [a, b], λ ∈ R

1.

∫ b

a

λf(x)dx = λ ·
∫ b

a

f(x)dx.

2.

∫ b

a

[f(x) + g(x)]dx =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx.
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1.2 The Definite integral

3.

∫ b

a

f(x)dx+

∫ c

b

f(x)dx =

∫ c

a

f(x)dx, ∀a, b, c

En particular:

∫ a

a

f(x)dx = 0.

4. If ∀x ∈ [a, b], f(x) ≥ 0. Then:

∫ b

a

f(x)dx ≥ 0∣∣∣∣∫ b

a

f(x)dx

∣∣∣∣ ≤ ∫ b

a

|f(x)|dx

5. If ∀x ∈ [a, b], f(x) ≤ g(x). Then:∫ b

a

f(x)dx ≤
∫ b

a

g(x)dx.

Examples 1.2.2.

1.

∫ 2

−1

|x− 1|dx =

∫ 1

−1

−(x− 1)dx+

∫ 2

1

(x− 1)dx

2.

∫ π

0

x cos(x)dx (by parts)

1.2.1 Improper Integrals

Definition 1.2.2.
Improper integrals are integrals in which one a booth the forms:∫ +∞

a

f(x)dx,

∫ a

−∞
f(x)dx,

∫ +∞

−∞
f(x)dx,

∫ b

a

f(x)dx,

where f is not continuous on interval.

•
∫ +∞

a

f(x)dx = lim
b→+∞

∫ b

a

f(x)dx (converge or diverge)

•
∫ +∞

−∞
f(x)dx =

∫ c

−∞
f(x)dx+

∫ +∞

c

f(x)dx.

Examples 1.2.3.

1.

∫ +∞

0

e−xdx = [−e−x]+∞0 = 1.
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The Integral

2.

∫ 2

−∞

1

x2
dx = [−1

x
]2−∞ = −1

2
.

3.

∫ 1

0

ln(x)dx = lim
a→0

∫ 1

a

ln(x) = lim
a→0

[x ln(x)− x]1a = −1.
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Chapter 2

Differential Equations

In this section we give a different method for solve a differential equation.

2.1 Ordinary differential equation 3

Definition 2.1.1.
An equation involving the derivatives of an unknown function y of a single variable x
over an interval x ∈ I. It can be written in the form:

F (x, y, y
′
, ..., y(n)) = 0, (2.1.1)

where n ∈ N∗ is called the order of this equation.

Shortly (2.1.1) is denoted by ODE.

2.1.1 Solution of ODE

Definition 2.1.2. [7](The General Solution)
The Solution of a differential equation containing as many arbitrary constants as the
order of the differential equation is called as the general solution.

Example 2.1.1.
Let ý = 1

x
. The general solution of this equation on R∗ is f(x) = ln|x|+ c, where c ∈ R

(constant) .

Definition 2.1.3. (Particular Solution)
The Solution obtain by giving particular values to the arbitrary constants in the general
solution is called particular solution.

Example 2.1.2.
g(x) = ln(x) is a particular solution of differential equation ý = 1

x
on R∗+.
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Differential Equations

Examples 2.1.1.

1. x+ 2y + x2y
′
= 0, is ODE the first order.

2. x− 2 + y
′′

= x3, is ODE the second order.

2.2 First Order Differential Equations [3]

Definition 2.2.1.
The general first order ODE has the form F (x, y, ý) = 0 (i.e ý = f(x, y)), where y is
a function of x.

The Solution of 1st order and 1st degree differential equation is obtained by following
methods if they are in some standard forms as i). Variable separable form ii) Linear
differential equation form.

2.2.1 Separable Equations

Definition 2.2.2.
The first order ODE is said to be separable if can be expressed as:

ý =
f(x)

g(y)
i.e : f(x)dx = g(y)dy. (2.2.1)

To solve (2.2.1), we have (2.2.1) =⇒
∫
f(x)dx =

∫
g(y)dy.

Examples 2.2.1.
Solve the following equations:
1) ý = x2 − 2x
2) ý

y
= 2x− 3

Solution:

1) We have ý = x2 − 2x =⇒ dy = (x2 − 2x)dx
Integrating both sides we have:∫
dy =

∫
(x2 − 2x)dx

=⇒ y = 1
3
x3 − x2 + c, (c is constant).

2)For y 6= 0, we have
ý
y

= 2x− 3 =⇒ 1
y
dy = (2x− 3)dx

=⇒
∫

1
y
dy =

∫
(2x− 3)dx

=⇒ ln|y| = x2 − 3x+ c1 , (c1 ∈ R )
=⇒ |y| = e(x2−3x).k, such that k = ec1 .
Then we can write the general solution in the form y = c.e(x2−3x), where c ∈ R∗.
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2.2 First Order Differential Equations [3]

2.2.2 Linear ODE of 1st order [2]

Definition 2.2.3.
A differential equation of the form:

ý = a(x)y + b(x), (2.2.2)

is called a first-order linear (in y and ý) equation.Where a and b the fuctions continuous
on interval I.

Remark 2.2.1.
If b(x) = 0, then the equation (2.2.3) is called homogeneous i.e in the form:

ý = a(x)y.

(Note that the homogeneous equation is separable.) Otherwise, the equation (2.2.3) is
called nonhomogeneous.

A ODE can be solved by the theorem:

Theorem 2.2.1.
Consider the first-order linear equation

ý = a(x)y + b(x). (2.2.3)

The general solution is the sum of the homogeneous solution and a particular solution:

y = yh + yp,

where yh = c.eA(x) (A is a primitive of a), yp is a particular solution of (2.2.3).

There are two very common methods to solve linear equations of first order. The
first is called the method of integrating factors. The second is called variation of
parameters.

Example 2.2.1.
Let the ODE: ý = y − x+ 1....(*)
1) Show that is yp = x is a solution of (*).
2) Find the general solution of (*).

Solution:
1) We have: ýp = 1. Then 1 = x− x+ 1 is true, so yp = x is a solution of (*).
2) The general solution of (*):
We know that: the solution of homogeneous equation: ý = y, is yh = c.ex, c ∈ R. Then
the general solution of (*) is: y = c.ex + x, where c ∈ R.

17



Differential Equations

2.2.3 The Integration Factor Method

In this section we discuss a technique for solving the first order linear non-homogeneous
equation

ý + a(x)y = b(x). (2.2.4)

We multiply the both sides of equation (2.2.4) by the function µ(x) 6= 0, , we get

µ(x)ý + a(x)µ(x)y = b(x)µ(x). (2.2.5)

We put: a(x)µ(x) = µ́(x), this implie that:

µ(x) = e
∫

(a(x)dx,

and from (2.2.5), we deduce that:

(µ(x)y)
′
= b(x)µ(x).

So,

y =
1

µ(x)

∫
b(x)µ(x)dx+

c

µ(x)
,

as the general solution of (2.2.4), c is constant real.
µ(x) called the integration factor.

Example 2.2.2.
Solve the following equation

ý + 2xy = x. (2.2.6)

We have: a(x) = 2x, b(x) = x. The integrating factor is: µ(x) = e
∫

2xdx = ex
2
.

Then

y = e−x
2

∫
xex

2

dx+ ce−x
2

=
1

2
e−x

2

.ex
2

+ ce−x
2

y =
1

2
+ ce−x

2

, c ∈ R.

Cauchy problem:
There exist the unique solution satisfying:{

ý = f(x, y)
y0 = f(x0).

Example 2.2.3.
In example 2.2.2, deduce the solution of (2.2.6) which is satisfying the initial condition:
y(0) = 3

2
.

We have y = 1
2

+ ce−x
2
, then y(0) = 1

2
+ c.

Therefore, y(0) = 3
2
⇐⇒ c = 1. So there exist the unique solution y = 1

2
+ e−x

2
.
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2.2 First Order Differential Equations [3]

2.2.4 The constant variation method

In the solution y = c.eA(x) of homogeneous equation ý = a(x)y, we suppose that c is
a function of x, such that y is a solution of non-homogeneous (2.2.4) , after this we
calculate c(x).

Example 2.2.4.
Solve the equation: ý + 2xy = 2xe−x

2
...(E)

The homogeneous equation is: ý + 2xy = 0...(H)
The solution of (H) is: yh = c.e−x

2
, c ∈ R.

We suppose that y = c(x).e−x
2
, is a solution of (E).

We have: ý = ´c(x).e−x
2 − 2xc(x)e−x

2
, we substitution in (E), we obtained:

ć(x)e−x
2 − 2xc(x)e−x

2
+ 2xe−x

2
= 2xe−x

2
, then ć(x) = 2x.

So: c(x) = x2 + k, k ∈ R, therefore the general solution of (E) is: y = (x2 + k)e−x
2
.

2.2.5 The Bernoulli Equation

In 1696 Jacob Bernoulli solved what is now known as the Bernoulli differential equation.
This is a first order nonlinear differential equation. The following year Leibniz solved
this equation by transforming it into a linear equation. We now explain Leibniz’s idea
in more detail.

Definition 2.2.4. [6]
The Bernoulli equation is

ý = a(x)y + b(x)yn, (2.2.7)

where a, b are two functions continuous on I and n ∈ N.

Remarks 2.2.1.

1. If n = 0 or n = 1: the equation (2.2.7) is linear.

2. If n ∈ N∗ − {1}: the equation (2.2.7) is nonlinear.

For the solution of (2.2.7) it is a nonlinear equation that can be transformed into a
linear equation.
If n ∈ N∗ − {1}, we multiply (2.2.7) by y−n, we get

ýy−n = a(x)y1−n + b(x)

Introduce the new unknown: z = y1−n and compute it’s derivative ź = (1− n)ýy−n.
If we substitute, we obtain the linear equation

ź = (1− n)a(x)z + (1− n)b(x),

we calculate z and after this we deduce y.
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Example 2.2.5.
Solve the equation:

ý = y + xy2. (2.2.8)

This equation is Bernoulli’s with n = 2.
We put: z = y1−2 i.e z = 1

y
, (y 6= 0), then ý = −ź

z2
, we substitute in (2.2.8):

−ź
z2

= 1
z

+ x 1
z2

, we get
ź = −z − x is a linear ODE. By integration factor,we have:
µ(x) = e

∫
−dx = e−x, and z = ex(

∫
−xe−xdx) + cex, c ∈ R.

Then by part, we deduce that: z = x− 1 + cex, so the solutions of (2.2.8) are:
y = 1

z
= 1

x−1+cex
or y = 0.

2.3 Second order ODE [4]

Newtons second law:
Consider movement of a point particle along a straight line and let its coordinate at
time t be x(t). The velocity (Geschwindigkeit) of the particle is v(t) = x́(t) and the
acceleration (Beschleunigung) is a(t) = x

′′
(t). The Newtons second law says that at

any time

mx
′′

= F, (2.3.1)

where m is the mass of the particle and F is the force (Kraft) acting on the particle.
In general, F is a function of t, x, x

′
so that (2.3.1) can be regarded as a second order

ODE for x(t).

Definition 2.3.1.
A general second order ODE, resolved with respect to y

′′
has the form

y
′′

= f(x, y, y
′
) (2.3.2)

Examples 2.3.1.
1) y

′′
= l(x)y

′ − 5 + x2y2.
2) 2xy

′′
+ xy

′
+ 5 = 0

2.3.1 Second Order Linear Equations

Definition 2.3.2.
An operator L is a linear operator iff for every pair of functions y1, y2 and constants
c1, c2 holds

L(c1y1 + c2y2) = c1L(y1) + c2L(y2).

In this Section we work with linear operator L(y) = ay
′′

+ by
′
+ cy associated by

equation as the following result.

20



2.3 Second order ODE [4]

Definition 2.3.3.
A second order linear differential equation for the function y is

a(x)y
′′

+ b(x)y
′
+ c(x)y = f(x), (2.3.3)

where a(x) 6= 0, b, c and f are continuous on the interval I ⊆ R.

Remarks 2.3.1.

1. (2.3.3) is homogeneous iff the source: f(x) = 0.

2. (2.3.3) has constant coefficients iff a, b and c are constants.

In this section we solve the equations of second order linear with a constant coeffi-
cients.

Examples 2.3.2.

1. y
′′

+ 4y
′ − 3y = ex, is second ODE linear non-homogeneous with constant coeffi-

cients.

2. 3y
′′

+ xy
′
+ (x2 − 1)y = 0, is second ODE linear homogeneous.

2.3.2 Solution of the homogeneous equation

Let the homogeneous equation with constant coefficients

ay
′′

+ by
′
+ cy = 0, (2.3.4)

associated homogeneous of (2.3.3), such that a, b and c are constants and a 6= 0.

Theorem 2.3.1. (General solution of (2.3.4) )
If y1 and y2 are linearly independent solution of (2.3.4) on I ⊆ R Then every solution
y of (2.3.4) can be write as a linear combination:

y = c1y1 + c2y2,

where c1, c2 are arbitray constants.

Solution of (2.3.4) :
We research the solution of the form y = erx, r ∈ R.
We have y

′
= rerx and y

′′
= r2erx sunbstituting into (2.3.4) we obtain

ar2 + br + c = 0. (2.3.5)
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(2.3.5) called the characteristic equation.
We have ∆ = b2 − 4ac, and the following results:

Sign of ∆ The solutions of (2.3.5) The solutions of (2.3.4)
∆ > 0 ∃r1, r2 ∈ R, (r1 6= r2) y = c1e

r1x + c2e
r2x

∆ = 0 ∃r1 = r2 y = (c1 + c2x)er1x

∆ < 0 ∃r1 = α + iβ, r2 = α− iβ y =
(
c1cos(βx) + c2sin(βx)

)
eαx.

Where c1, c2 are arbitrary constants, α and β are constants.

Examples 2.3.3.
Solve the equations:

1. y
′′ − 3y

′
+ 2y = 0

2. y
′′

+ 2y
′
+ 2y = 0

3. y
′′ − 4y

′
+ 4 = 0.

Solution:

1) y
′′ − 3y

′
+ 2y = 0

The characteristic equation is:
r2 − 3r + 2 = 0.

We have ∆ = (−3)2 − 4(1)(2) = 1, there exist two roots r1 = 1 and r2 = 2. Then
The general solution of 1) is: y = c1e

x + c2e
2x, where c1, c2 ∈ R.

2)y
′′

+ 2y
′
+ 2y = 0

The characteristic equation is:
r2 + 2r + 2 = 0.

We have ∆ = (2)2 − 4(1)(2) = −4 = (2i)2, there exist two roots r1 = −1 − i and
r2 = −1 + i, we put α = −1, β = 1. Then
The general solution of 2) is: y = (c1cosx+ +c2sinx)e−x, where c1, c2 ∈ R.
3) For the equation 3) we obtain, the general solution is: y = (c1 + c2x)e2x.

2.3.3 Solution of the nonhomogeneous equation

Let the nonhomogeneous equation with constant coefficients

ay
′′

+ by
′
+ cy = f(x). (2.3.6)

The associated characteristic equation is:

ar2 + br + c = 0, a 6= 0. (2.3.7)
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2.3 Second order ODE [4]

We know that the general solution of (2.3.6) is: y = yh + yp.
We choose a particular solution yp of (2.3.6) as the following table.

Type of f(x) Type of yp
f(x) = pn(x)eλx, (λ ∈ R) 1) If λ is not root of (2.3.7): yp = qn(x)eλx.

2) If λ is simple root of (2.3.7): yp = xqn(x)eλx.
3) If λ is double root of (2.3.7): yp = x2qne

λx.
f(x) = pn(x)sin(ωx) + pm(x)cos(ωx) 1) If iω is not root of (2.3.7): yp = qn(x)sin(ωx)

+qm(x)cos(ωx)
2) If iω is root of (2.3.7): yp = x[qn(x)sin(ωx)

+qm(x)cos(ωx)].

Where pn(x) and qm(x) are polynomials of degree n, m and λ, ω are constants.

Exercise 2.3.1.
Solve the following equations:

1. y
′′

+ 2y
′
+ 2y = 2x

2. y
′′

+ y = 2x2 − 1

3. y
′′ − 3y

′
+ 2y = ex, y(0) = 0, y

′
(0) = 1

Solution:

1) y
′′

+ 2y
′
+ 2y = 2x.

The associated homogeneous is: y
′′

+ 2y
′
+ 2y = 0, has solution is: yh = (c1cosx +

+c2sinx)e−x, where c1, c2 ∈ R. ( From examples (2.3.3) ).
We give a particular solution of 1):
We put f(x) = 2xe0x, since λ = 0 is root not of the characteristic equation, then yp is
in the form: yp = ax+ b.
We have: y

′
p = a, y

′′
p = 0, we substituting in 1) we obtain:

2a + 2ax + 2b = 2x, so: a=1 and b = -1, therefore: yp = x − 1, then the general
solution of 1) is:
y = (c1cosx+ +c2sinx)e−x + x− 1.

2) For y
′′

+ y = 2x2 − 1, the general solution is:
y = c1cosx+ c2sinx+ 2x2 − 5.

3) y
′′ − 3y

′
+ 2y = ex.

The associated homogeneous is: y
′′ − 3y

′
+ 2y = 0, has solution is: y = c1e

x + c2e
2x,

where c1, c2 ∈ R. ( From examples (2.3.3) ).
We search a particular solution of 3):
We suppose that f(x) = ex, since λ = 1 is root of the characteristic equation, then yp
is in the form: yp = axex.
We have: y

′
= (ax+ a)ex, y

′′
= (ax+ 2a)ex, we substituting in 3) we get:
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a = −1, therefore yp = −xex, then the general solution of 3) is:
y = (c1 − x)ex + c2e

2x.
We have: y

′
= −ex + (c1 − x)ex + 2c2e

2x{
y(0) = 0
y
′
(0) = 1

⇐⇒
{
c1 = −c2

−1 + c1 + 2c2 = 1
⇐⇒

{
c1 = −2
c2 = 2.

So, the solution of 3) is: y = (−2− x)ex + 2e2x
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Chapter 3

Matrices

3.1 Definitions and examples

Definition 3.1.1.
A rectangular arrangement of m rows and n columns and enclosed within a bracket is
called a matrix. We shall denote matrices by capital letters as A,B,C etc.

A =


a11 a12 ...a1n

a21 a22 ...a2n

. . .

. . .

. . .
am1 am2 ...amn

 = (aij)m×n,

where 1 ≤ i ≤ m, and 1 ≤ j ≤ n. A is a matrix of order m× n.

Examples 3.1.1.

1) M1 =

 4 1
0 −5
−2 7

 is a matrix of order 3× 2.

2) M2 =

(
i 3
−3 1

)
is a matrix of order 2× 2, with coefficients in C.

Remark 3.1.1.
The set of the matrix of order m× n denoted by: M(R) or M(C).

3.2 Matrix Operations [1]

Let A = (aij) and B = (bij) ∈Mm,n(C), C = (cij) ∈Mn,p(C) matrices, and α ∈ R.
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1. Equality of two matrices:A = B ⇐⇒ aij = bij,∀1 ≤ i ≤ m, 1 ≤ i ≤ n.

Example 3.2.1.(
1 0
5 −3

)
=

(
1 0
5 3i2

)
, because i2 = −1.

But
(

1 3
)
6=
(

1
3

)
2. Addition:

The sum of A and B, denoted A+B, is defined to be the matrix C = [cij], with:
cij = aij + bij.

3. Scalar Multiplication:
The product of α ∈ C with A, denoted αA, where αA = (αaij) = Aα

Examples 3.2.1.

(a)

(
1 −2
3 4

)
+

(
6 −3
1 0

)
=

(
7 −5
4 4

)

(b) 2.

 3 −1 2i
−2 0 1
5 i 4

 =

 6 −2 4i
−4 0 2
10 2i 8


4. Matrix Multiplication:

The product of A and C, denoted AC, is a matrix AC = Σk=n
k=1 (aikckj) = ai1c1j +

ai2c2j + ...+ aincnj

Example 3.2.2.(
1 −2
3 0

) (
2 0 3
−1 −4 1

)
=

(
1.2 + (−2).(−1) 8 1

6 0 9

)
=

(
4 8 1
6 0 9

)
Remarks 3.2.1.

1. AB is defined if and only if the number of columns of A equal the number of rows
of B.

2. A.B 6= B.A

For example:

(
2
−3

)(
1 4

)
=

(
2 8
−3 −12

)
.

But the product
(

1 4
)
.

(
2
−3

)
= (−10).
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3.2 Matrix Operations [1]

3. A.C = B.C is not deduce A = B.

For example:
(

1 4
)
.

(
2
−3

)
=
(

1 4
)
.

(
−2
−2

)
= (−10), but

(
2
−3

)
6=(

−2
−2

)
.

3.2.1 Special Matrices

Definition 3.2.1.
Let A = (aij) ∈M(m,n)(C)

1. Zero-matrix:
A is called a zero-matrix, denoted 0(m,n) iff: aij = 0, ∀i, j where 1 ≤ i ≤ m, 1 ≤
j ≤ n.

For example: o(2,3) =

(
0 0 0
0 0 0

)
2. Square matrix:

A is called a square matrix Iff m = n, and denoted by: A ∈Mn(C).

3. Let A ∈Mn(C).
(a) Diagonal matrix:
A is said to be a diagonal matrix iff: ∀i 6= j : aij = 0, denoted A = diag(a11, ..., ann).
Examples:

The zero matrix 0n and

 2 0 0
0 0 0
0 0 4

 are diagonal matrices

(b) Identity matrix:
A diagonal matrix A is said to be a identity matrix iff: aii = 1,∀1 ≤ i ≤ n, and
denoted by In.

Examples: I1 = 1, I2 =

(
1 0
0 1

)
and I3 =

 1 0 0
0 1 0
0 0 1


(c) Upper triangular:
A is said to be an upper triangular matrix iff: aij = 0,∀i > j.
(d) lower triangular:
A is said to be a lower triangular matrix iff: aij = 0,∀i < j.
Examples:

a) A =

(
5 3
0 −4

)
is upper triangular and B =

 3 0 0
0 0 0
7 2 2i


is lower triangular.
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b) The matrices 0n, In are upper as well as lower triangular matrices.

Remark 3.2.1.
A matrix A is a diagonal matrix iff: is upper triangular and lower triangular.

3.2.2 Transpose

Definition 3.2.2.
The transpose of A = (aij) ∈M(m,n)(C), denoted AT is the nm matrix whose columns
are the respective rows of A, i.e AT = (aji)n×m.

Examples 3.2.2.

•
(

1 0
2 7

)T
=

(
1 2
0 7

)

•

 1 0 3i
3 −4 −1
6 0 2

T

=

 1 3 6
0 −4 0
3i −1 2


Properties 3.2.1.
Let A ∈M(m,n)(C) and B ∈M(n,p)(C), λ ∈ R (or C).

1. (AT )T = A

2. (AB)T = BTAT

3. (λA)T = λAT

Definition 3.2.3.
The square matrix A = (aij) ∈M(m,n)(C) is symmetric iff: AT = A, i.e aij = aji,∀i, j ∈
[1, n].
A is skew symmetric (or antisymmetric) iff: AT = −A, i.e aij = −aji,∀i, j ∈ [1, n].

Examples 3.2.3.

• The matrixs A = λ and B =

 1 −2 5
−2 3 0
5 0 7

 are symmetric because AT = A,

and BT = B, where λ ∈ C.
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3.3 The Determinant

• The matrix C =

(
4 −2
−2 6

)
is skew symmetric.

• The matrix D =

 1 −2 5
2 3 0
5 0 7

 is neither symmetric nor antisymmetric, because

DT 6= D and DT 6= −D.

Exercise 3.2.1. Let the matrix A =

 1 a b
−4 5 8
0 c 7


Find the a, b ∈ R, such that:

• A is symmetric.

• A skew symmetric.

Exercise 3.2.2.
Calculate x ∈ R, such that: x 1

3 −2
4 0

( 5 2
3 −1

)
=

 −2 −3
9 8
20 8


3.3 The Determinant

The determinant of the square matrix A the order n is the number denoted by det(A)
or |A|.
1) If n = 1: i.e A = [a],then det(A) = a

2) If n = 2: Let A =

(
a b
c d

)
, then det(A) = ad− cb.

Example 3.3.1.

Let A =

(
4 2
5 −1

)
, then det(A) = 4(−1)− (5)(2) = −14.

Definition 3.3.1.
Let A a square matrix of order n.Then the determinant of A is defined by:
1) If n = 1: A = [a], det(A) = a.
2) If n 6= 1: det(A) =

∑i=n
i=1 (−1)i+jaijdet(Aij) =

∑i=n
j=1(−1)i+jaijdet(Aij), where Aij is

a matrix minor of order (n − 1), formed by deleting the ith row and the jth column
of A ( we can be fixed the row i or the column j).
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Particular case n=3:

Let A =

 a+
11 a−12 a+

13

a21 a22 a23

a31 a32 a33

, then

det(A) = a11

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣− a12

∣∣∣∣ a21 a23

a31 a33

∣∣∣∣+ a13

∣∣∣∣ a21 a22

a31 a32

∣∣∣∣
Examples 3.3.1.

Let A =

(
1 −2
4 3

)
and B =

 1 2 3
0 3 1
−1 2 −2

.

Find the matrix minors A12, B11, B21.

Solution:

A12 is a matrix minor of order 2, formed by deleting the first row and the sec-
ond column of A. Then

A12 =

(
0 1
−1 −2

)
B11 is a matrix minor of order 2, formed by deleting the first row and the first col-
umn of B. Then

B11 =

(
3 1
2 −2

)
, and B21 =

(
2 3
2 −2

)
Example 3.3.2.

Let A =

 1+ 2− 3+

0 3 1
−1 2 −2


We have:

det(A) = 1.det(A11)− 2.det(A12) + 3.det(A13)

= 1.

∣∣∣∣ 3 1
2 −2

∣∣∣∣− 2.

∣∣∣∣ 0 1
−1 −2

∣∣∣∣+ 3.

∣∣∣∣ 0 3
−1 2

∣∣∣∣
= −8− 2 + 9 = −1

Remark 3.3.1.
We can calculate det(A) by: det(A) = 1.det(A11)− 0.det(A21)− 1.det(A31)

Example 3.3.3.

Let B =

 5 −1 3
0 1 2
4 −2 6

, then
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3.3 The Determinant

det(B) = 5.det(B11)− 0.det(B21) + 4.det(B31)

= 5.

∣∣∣∣ 1 2
−2 6

∣∣∣∣+ 4.

∣∣∣∣ −1 3
1 2

∣∣∣∣
= 30− 20 = 10

Properties 3.3.1.
Let A = (aij) and B be two square matrices of the same order n, and In is a matrix
identity.Then

1. If A is a triangular matrix: det(A) =
∏n

i=1 aii = a11a22...ann.
In particular: det(In) = 1

2. det(AT ) = det(A)

3. det(λA) = λndet(A), where λ ∈ C.

4. det(AB) = det(A).det(B).

Examples 3.3.2.

1. Let A =

 2 4 −12
0 −4 6
0 2 10

 = 2.

 1 2 −6
0 −2 3
0 1 5

, then

det(A) = 23.

∣∣∣∣∣∣
1 2 −6
0 −2 3
0 1 5

∣∣∣∣∣∣ = 8.

∣∣∣∣ −2 3
1 5

∣∣∣∣ = 8.(−13) = −64

2. Let the triangular matrix B =


1 7 10 −5
0 2 −8 9
0 0 −4 20
0 0 0 5

,then

det(B) = (1).(2).(−4).(5) = −40.

Theorem 3.3.1. (Special matrices with Zero determinant)

Let A be an n× n-matrix.
1. If A has a row consisting only of zeros, or a column consisting only of zeros,
then det(A) = 0.
2. If A has a row that is a scalar multiple of another row, or a column that is
a scalar multiple of another column, then det(A) = 0.
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Examples 3.3.3.

1. Let A =

 0 8 −10
0 −4 i
0 3 1

, then det(A) = 0.

2. Let B =

 2 4 −6
1 2 −3
7 0 5

, then det(B) = 0, because the first row is multiple two

of the second row.

3.4 The inverse of a matrix

Definition 3.4.1.
Let A ∈Mn(C) A is invertible (has an inverse) if only if there exists B ∈Mn(C) such
that AB = BA = In, we denoted by B = A−1.

Example 3.4.1.

Let P =

(
1 1
1 2

)
and Q =

(
2 −1
−1 1

)
, P = Q−1 because PQ = QP = I2.

3.4.1 The cofactor matrix

Definition 3.4.2.
Let A ∈Mn(C). Then, the cofactor matrix, denoted Cof(A), is an Mn(C) matrix with
Cof(A) = [Cij], where

Cij = (−1)i+jdet(Aij), for 1 ≤ i ≤ n, 1 ≤ j ≤ n.

And, the Adjugate (classical Adjoint) of A, denoted Adj(A) = CofT (A).

Example 3.4.2.

Let A =

 1+ 2− 3+

2 3 1
1 2 4

 .

We have Cof(A) =



+

∣∣∣∣ 3 1
2 4

∣∣∣∣ − ∣∣∣∣ 2 1
1 4

∣∣∣∣ +

∣∣∣∣ 2 3
1 2

∣∣∣∣
−
∣∣∣∣ 2 3

2 4

∣∣∣∣ +

∣∣∣∣ 1 3
1 4

∣∣∣∣ − ∣∣∣∣ 1 2
1 2

∣∣∣∣
+

∣∣∣∣ 2 3
3 1

∣∣∣∣ − ∣∣∣∣ 1 3
2 1

∣∣∣∣ +

∣∣∣∣ 1 2
2 3

∣∣∣∣


=

 10 −7 1
−2 1 0
−7 5 −1

,
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and Adj(A) = CofT (A) =

 10 −2 −7
−7 1 5
1 0 −1


3.4.2 Formula for the inverse

Theorem 3.4.1.
Let A is a square matrix of order n.
A is invertible iff: det(A) 6= 0. In this case, we have

A−1 =
1

det(A)
.Adj(A) =

1

det(A)
.CofT (A)

Examples 3.4.1.
Find the inverse for all matrix if exist

a) A =

(
1 4
0 2

)
b) B =

(
3 −6
1 −2

)
c) C =

 0 2 1
−1 2 2
2 −2 −2


Solution

a) We have det(A) = 12− 04 = 2 6= 0, then A is invertible and

A−1 = 1
det(A)

.CofT (A), where Cof(A) =

(
2 0
−4 1

)
, so

A−1 = 1
2

(
2 −4
0 1

)
=

(
1 2
0 1

2

)
.

b) We have det(B) = 3(−2)− 1(−6) = 0, then B is not invertible.

c) We have det(C) = 0.

∣∣∣∣ 2 −2
−2 −2

∣∣∣∣− 2.

∣∣∣∣ −1 2
2 −2

∣∣∣∣+ 1.

∣∣∣∣ −1 2
2 −2

∣∣∣∣= -2(-2)-2= 2.

Since det(C) 6= 0, then C is invertible and C−1 = 1
det(C)

.CofT (C), where

Cof(C) =



+

∣∣∣∣ 2 2
−2 −2

∣∣∣∣ − ∣∣∣∣ −1 2
2 −2

∣∣∣∣ +

∣∣∣∣ −1 2
2 −2

∣∣∣∣
−
∣∣∣∣ 2 1
−2 −2

∣∣∣∣ +

∣∣∣∣ 0 1
2 −2

∣∣∣∣ −
∣∣∣∣ 1 2

1 2

∣∣∣∣
+

∣∣∣∣ 0 2
2 −2

∣∣∣∣ −
∣∣∣∣ 2 1

2 2

∣∣∣∣ +

∣∣∣∣ 0 1
−1 2

∣∣∣∣


=

 0 2 −2
2 −2 4
2 −1 2

.

Therefore
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C−1 = 1
2

 0 2 2
2 −2 −1
−2 4 2

=

 0 1 1
1 −1 −1

2

−1 2 1

 .

Exercise 3.4.1.
Determine whether each of the following matrices is invertible? If yes, find the inverse.

A =

(
1 2
−2 3

)
, B =

 1 2 3
0 2 1
4 1 1

, C =

 1 1 0
3 1 2
−2 2 4

 .

Exercise 3.4.2.
Consider the matrix  1 t t2

0 1 2t
t 0 2

 , t ∈ R.

Does there exist a value of t for which this matrix fails to be invertible? Explain.

3.5 Linear application associated of the matrix

Definition 3.5.1.
We say that the application f : E −→ F is linear iff:

∀(X, Y ) ∈ E2, ∀(α, β) ∈ R2 : f(αX + βY ) = αf(X) + βf(Y )

Examples 3.5.1.

1. f : R −→ R, f(x) = 4x is linear because:
∀(x, y) ∈ R2,∀(α, β) ∈ R2 : f(αx + βy) = 4(αx + βy) = α(4x) + β(4y) =
αf(x) + βf(y).

2. g : R −→ R, g(x) = 3x+ 1 is not linear, because g(αx+ βy) = 3(αx+ βy) + 1 =
3αx+ 3βy + 1 6= αg(x) + βg(y).

Definition 3.5.2.
We call the linear application associated of the matrix P = (aij) ∈ Mm,n, the applica-
tion f defined by:

f : Rn −→ Rm,

where ∀X


x1

x2

.

.

.
xn

 ∈ R
n, f(X) = P.X
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3.5 Linear application associated of the matrix

Example 3.5.1.

The linear application associated of the matrix A =

(
1 2
−3 4

)
is

f : R2 −→ R2

∀X
(
x
y

)
∈ R2, f(X) = A.X =

(
x+ 2y
−3x+ 4y

)
.

Proposition 3.5.1.
The application

f : Rn −→ Rm, wheref(X) = P.X,

is bijective iff: P is invertible i.e det(P ) 6= 0, in this case :

f−1 : Rm −→ Rn,

where f−1(X) = P−1.X.

Exercise 3.5.1.

Let A =

(
3 5
−1 −2

)

1. Prove that A is invertible and find A−1.

2. Determine the application associated of the matrix A.

3. Find the inverse application f−1.

Solution:

1) We have det(A) = 3(−2) + 5 = −1 6= 0, then A is invertible.
A−1 = 1

det(A)
.CofT (A), where

Cof(A) =

(
−2 1
−5 3

)
, so: A−1 =

(
2 −1
5 −3

)
.

2) The application associated of A is:
f : R2 −→ R2,such that

∀X
(
x
y

)
∈ R2, f(X) = A.X =

(
−2x+ y
−5x+ 3y

)
.

3) The inverse application is: f−1 : R2 −→ R2,such that

∀X
(
x
y

)
∈ R2, f(X) = A−1.X =

(
2x− y
5x− 3y

)
.
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3.6 Change of Basis, Transition Matrix

Definition 3.6.1. (Vector Space)
We said that the non-empty set E is a vector space over K (where K = R or K = C),
or K-vector space if E is equipped with two composition laws:
for all α, β ∈ R and all u, v, w ∈ E
Internal composition law for ”addition” verifying:

1. u+ v = v + u (commutative law for addition)

2. u+ (v + w) = (u+ v) + w (associative law for addition)

3. ∃0E ∈ E, such that ∀u ∈ E, 0E + u = u ( 0E called neutral element).

4. ∀u ∈ E,∃v ∈ E, u+ v = 0E, ( v = −u called symmetric element).

External composition law ”scalar multiplication” verifying:

1. α(u+ v) = αu+ αv

2. (α + β)u = αu+ βu

3. α(βx) = (αβ)x

4. ∃1E ∈ E, such that, ∀u ∈ E : 1Eu = u.

The elements of E are called to as ”vectors.”

Examples 3.6.1.

• (R2,+, .) is vector space, where +, . defined by: ∀(x1, y1), (x2, y2) ∈ R2, ∀α ∈ R:
(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2),
and α.(x1, y1) = (αx1, αy1).

• (Rn,+, .) is vector space.
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3.6 Change of Basis, Transition Matrix

• The set of the matrices M2,2(R),+, .) is vector space

Definition 3.6.2. (Linear Independence)

. A family (x1, x2, ..., xn) of E is called linearly independent if and only if:
∀α1, α2, ..., αn ∈ K:

α1x1 + α2x2 + ...+ αnxn = 0 =⇒ α1 = α2 = ... = αn = 0.

.. A family (x1, x2, ..., xn) of E is said to be generating if for every vector X ∈ E, can
be exist α1, α2, ..., αn ∈ K, such that:

X = α1x1 + α2x2 + ...+ αnxn

Definition 3.6.3.
A vector space’s basis is defined as any family (x1, x2, ..., xn) of E that is both linearly
independent and generating for E.

Example 3.6.1.
B = {(1, 0), (0, 1)} is a basis of R2,because:
a) B linearly independent: We have ∀(α, β) ∈ R2, α(1, 0) +β(0, 1) = 0 =⇒ α = β = 0.
b) B is generating of R2 : ∀(x, y) ∈ R2, we have (x, y) = x(1, 0) + y(0, 1).

3.6.1 Change of basis matrix

In a vector space E of dimension n, consider two bases:
B1 = (e1, e2, ..., en), B́ = (é1, é2, én).
If the vectors éj are defined in the basis B by the formula:

éj =
n∑
i=1

αijei,

then, the change of basis matrix from the basis B to the basis B0 is given by:

P = (αij) =


α11 α12 . . . α1n

α21 α22 . . . α2n

. . . . . .

. . . . . .

. . . . . .
αn1 αn2 . . . αnn

 .
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Therefore if X =


x1

x2

.

.

.
x1

, Y =


y1

y2

.

.

.
y1

, the two matrices of a vector u in B and B́

we have the following results:

X = P.Y or Y = P−1.X
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Chapter 4

Systems of linear equations

4.1 Definition and examples

Definition 4.1.1.
A system of m linear equations in n variables x1, x2, · · ·, xn is a set of equations of the
form: 

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

·
·
·
am1x1 + am2x2 + · · ·+ amnxn = bn

(4.1.1)

where aij, bi ∈ R (1 ≤ i ≤ m, 1 ≤ j ≤ n).

Remarks 4.1.1.

1. (4.1.1) is called homogeneous if bi = 0, ∀1 ≤ i ≤ n and non-homogeneous,
otherwise.

2. Let A =


a11 a12 · · · a1n

· · · · · ·
· · · · · ·
· · · · · ·
am1 am2 · · · amn

, X =


x1

x2

·
·
·
xn

, B =


b1

b2

·
·
·
bn


(4.1.1) can be we written as AX = B ⇔ (4.1.1), where A is called the coefficient
matrix.
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Systems of linear equations

Examples 4.1.1.

1. Let the system {
2x− 3y = 4
y + 5y = 1

(4.1.2)

The associated matrix is A =

(
2 −3
1 5

)
(4.1.2)⇔ A ·

(
x
y

)
=

(
4
1

)

2. Let the system 
x− 5y = 4
3x− 2y + z = 1
y − 2z = 6

The matriciel form is: B.X = C, where B =

 1 −5 0
3 −2 1
0 1 −2

 and C =

 4
1
6

 .

4.2 Rank of a matrix

Definition 4.2.1.
Consider A = (aij) ∈Mm,n(C)

1. Rank(A) = r ≥ 1 iff A has a (r × r) sub matrix with nonzero determinant.

2. An (n× n) square matrix A has Rank(A) = n iff:

det(A) 6= 0

Examples 4.2.1.

1. A =

(
5 15
1 3

)
∈M2×2

We have: det(A) = 0 Then: A1 = [5], det(A1) 6= 0 Rank(A) = 1

2. A =

 1 0 0
−1 2 1
2 −2 −1


We have: det(A) = 0, A3,3 = A, then Rank(A) 6= 3.

A2,2 =

(
−1 1
2 −1

)
, det(A2,2) 6= 0. Then: Rank(A) = 2.
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4.3 The set solution of system AX = B (4.1.1)

4.3 The set solution of system AX = B (4.1.1)

We put Rank(A) = r, A ∈Mm,n(C).

1. If r = m = n and det(A) 6= 0: The system 4.1.1 has a unique solution

2. If r < n (det(A) = 0): The system AX = B has an infinite solution or not exist
a solution.

4.4 Method of solution

4.4.1 Cramer’s Rule

Let AX = B, det(A) 6= 0. We have the theorem.

Theorem 4.4.1. (Cramer’s Rule)
Suppose det(A) 6= 0 (A ∈Mn,n) and we wish to solve the system AX = B by:

xi =
det(Ai)

det(A)
,

where: Ai is the matrix obtained by replacing the i th column of B.

Example 4.4.1.
Let the system {

3x− y = 4
−5y + 2y = −2

(4.4.1)

A =

(
3 −1
−5 2

)
, B =

(
4
−2

)
, X =

(
x
y

)
(4.4.1) ⇔ AX = B

det(A) = 3.2− 5 = 1 6= 0. Then: (4.4.1) has a unique solution.

x =
det(A1)

det(A)
, y =

det(A2)

det(A)
,

A1 =

(
4 −1
−2 2

)
, A2 =

(
3 4
−5 −2

)
x = det(A1)

det(A)
= 6

1
= 6, y = det(A2)

det(A)
= 14

1
= 14

Example 4.4.2.
Let the system {

2x+ y = 5
6x+ 3y = 2

(4.4.2)
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Systems of linear equations

We consider

A =

(
2 1
6 3

)
, B =

(
5
2

)
, X =

(
x
y

)
(4.4.2) ⇔ AX = B

det(A) = 2 × 3 − 6 × 1 = 0. Then: (4.4.2) has an infinite solution or not exist a
solution.
We have: 6x+ 3y = 2 ⇔ 2x+ y = 1, then

(4.4.2) ⇔
{

2x+ y = 5
2x+ y = 1

from the two equation we have a contradiction, then the set solution is S = φ.

4.4.2 Method of inverssion

Consider the matrix equation: AX = B, |A| 6= 0.

AX = B ⇔ A−1AX = A−1B

⇔ X = A−1B

Then: the system (4.1.1) has a unique solution X.

Example 4.4.3.
2x+ y = 7
−3y + z = −8
y + 2z = −3

Let: A =

 2 1 0
−3 0 1
0 1 2

, X =

 x
y
z

, B =

 7
−8
−3


det(A) = 4 6= 0. Then: A is invertible

AX = B ⇔ X = A−1 ·B (∗)

We have Com(A) =

 −1 6 −3
−2 4 −2
1 −2 3
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4.4 Method of solution

Then:

A−1 = 1
det(A)

· Com(A)T = 1
4

 −1 −2 1
6 4 −2
−3 −2 3

 =

 −1
4
−1

2
1
4

3
2

1 −1
2

−3
4
−1

2
3
4


From (∗), X = A−1B =

 −1
4
−1

2
1
4

3
2

1 −1
2

−3
4
−1

2
3
4

 7
−8
−3

 =

 3
2

4
−7

2


4.4.3 Method of Gaussien

Elementary operations

Let the system of linear equations:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

·
·

·
·

·
·

am1x1 + am2x2 + · · ·+ amnxn = bm

(4.4.3)

Definition 4.4.1.
The Augmented matrix of (4.4.3) is [A|B] there are six types of elementary trans-
formations of A, three of them are row transformations and other three of them are
column transformations.
There are as follows ”Elementary row operations

1. Interchange two rows denoted by: Ri ↔ Rj.

2. Multiplication by K ∈ R∗ to all elements in the ith row denoted by:

Ri ←− KRj

3. Add a multiple of one row to another row denoted by:

Ri ←− Ri +KRj

Definition 4.4.2. (Equivalent matrix)
A matrix B is said to be equivalent to a matrix A if B can be obtained from A, by
many successive elementary transformations on a matrix A.

A ∼ B.
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Systems of linear equations

Definition 4.4.3. Echelon from (upper triangular)
A system of three equations in variables x, y, z is said to be in echelon from iff: can be
written: 

a1x+ b1y + c1z = d1

b2y + c2z = d2

c3z = d3

i.e: [A|B] =

 a1 b1 c1 d1

0 b2 c2 d2

0 0 c3 d3


To solve a system AX = B if can be transformed [A|B] in upper triangular this

method called Gaussien’s method.

Example 4.4.4.

Solve the system

{
2x− 3y = −10
x− 3y = −8

Solution:

The augmented matrix is:[
2 −3 −10
1 −3 −8

]
R1 ↔ R2−−−−−−→

[
1 −3 −8
2 −3 −10

]
R2 ←− R2 − 2R1−−−−−−−−−−−−→

[
1 −3 −8
0 3 6

]
The system corresponding of this from is:{
x− 3y = −8
3y = 6

⇔
{
y = 2
x = 3× 2− 8 = −2,

then the set solutionis: S = {(−2, 2)}

Example 4.4.5.

Solve the system


3x− y + 5z = 8
y − 10z = 1
6x− y = 17

Solution:

The augmented matrix of this system is:

[A|B] =

 3 −1 5 8
0 1 −10 1
6 −1 0 17

R3 ←− R3 − 2R1−−−−−−−−−−−−→

 3 −1 5 8
0 1 −10 1
0 1 −10 1
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4.4 Method of solution

R3 ←− R3 −R2−−−−−−−−−−−→

 3 −1 5 8
0 1 −10 1
0 0 0 0


The system corresponding to this echelon from is:

3x− y + 5z = 8
y − 10z = 1
0x+ 0y + 0z = 0

⇔


y = 10z + 1
3x− y + 5z = 8
z = t

⇔


z = t
y = 10t+ 1
x = 1

3
(10t+ 1− 5t+ 8) = 3 + 5

3
t

The set solution is: S =
{

(3 + 5
3
t, 10t+ 1, t)

}
, t ∈ R, (infinite solution).

Example 4.4.6.

For this system


x− 4y + 3z = 11
2x+ 10y + 7z = 27
x+ y + 2z = 5

The operations are:

R2 ← R2 − 2R1, R3 ← R3 −R1

R3 ← 2R3, R3 ← R3 + 3R2

We deduce the set solution is:
S = {(−2, 1, 3)}
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Chapter 5

Multivariable functions

5.1 Definitions and examples

Definition 5.1.1.
We call a function of n(n ∈ N∗) real variables any function

f : Rn −→ R
(x1, · · ·, xn) 7−→ y

Examples 5.1.1.

1) f : R −→ R
x 7−→ 5x2 − 1

2) g : R2 −→ R
(x, y) 7−→ (xy − 4)

Definition 5.1.2.
The definition set of f are the points of M ∈ Rn/f(M) ∈ R.

Examples 5.1.2.

• 1) f(x, y) = x
2y
, Df = R× R∗

• 2) g(x, y) =
√
x− 1

y
, Dg = R+ × R∗
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5.2 Limits, continuity, and partial derivatives of a function

5.2 Limits, continuity, and partial derivatives of a

function

For simplicity, the statements will be given in the case of two variables

Definition 5.2.1. (Limits)
Let (x0, y0) ∈ Df .

lim
(x,y)→(x0,y0)

f(x, y) = ` ⇔ (∀ε > 0,∃α, β > 0, |x − x0| < α and |y − y0| < β) ⇒

|f(x, y)− `| < ε

Definition 5.2.2. (Continuity)
Let (x0, y0) ∈ Df .

1. f continues in (x0, y0)⇔ lim
(x,y)→(x0,y0)

f(x, y) = `.

2. f continue on I ∈ Df , iff f continues at all points I

Examples 5.2.1.

(I) Determine the domain of definition of functions:

f(x, y) =
x+ y

x− y
, Df =

{
(x, y) ∈ R2, x 6= y

}
g(x, y) =

x− 2y

x2 + y2
, Dg = R∗2

h(x, y) =
ln(y)√
x− y

, Dh =
{

(x, y) ∈ R2, y > 0 and x > y
}

(II) Study the continuity of functions:

1) f(x) =

{
x2−y2
x2+y2

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0).

We have: Df = R
We pose: y = 0, then

lim
(x,0)→(0,0)

f(x, y) = lim
(x,0)→(0,0)

x2

x2
= 1

We pose: x = 0, then

lim
(0,y)→(0,0)

f(x, y) = lim
(0,y)→(0,0)

−y2

y2
= −1.
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So f does not admit a limit. Then f is not continuous at (0, 0).

2) g(x) =

{
y3

(x−1)2+y2
if (x, y) 6= (1, 0)

0 if (x, y) = (1, 0).

We have: Dg = R2

We pose: x = 1, y 6= 0, g(1, y) = y. Then

lim
(x,y)→(1,0)

g(x, y) = lim
y→0

y = 0

We pose: y = 0 and x 6= 1 , g(x, 0) = 0. Then

lim
(x,y)→(1,0)

g(x, y) = 0 = g(0, 0).

So g is continues at a point (1, 0).

5.3 Differentiability

Definition 5.3.1.
We say that f is differentiable in (x0, y0) iff ∃`1 and `2 such that

`1 =
∂f

∂x
(x0, y0) and `2 =

∂f

∂y
(x0, y0)

Remark 5.3.1.
We note: df = ∂f

∂x
dx+ ∂f

∂y
dy the total differential, and we write

∇f =

 ∂f
∂x

∂f
∂y


Example 5.3.1.
Calculate all partial derivatives of order 1 for all functions

1. f(x, y) = y2 − 3xy ⇒ ∂f
∂x

= −3y.

2. g(x, y) = x−3y
y+x

, and deduce ∂g
∂x

(0, 1).

Solution:
1) We have: Df = R2, then ∂f

∂x
= −3y and ∂f

∂y
= 2y − 3x.

2 )For (x, y) ∈ R2 and y 6= −x: We have, ∂g
∂x

= 1.(y+x)−(x−3y)
(y+x)2

= 4y
(y+x)2

∂g
∂y

= −3(y+x)−(x−3y)
(y+x)2

= −2x
(y+x)2

.

We deduce that: ∂g
∂x

(0, 1) = 4.
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5.4 Double and triple integral

5.4 Double and triple integral

5.4.1 Double integral

Theorem 5.4.1.
Let ϕ and ψ two continuous functions on [a, b] with ϕ ≤ ψ. We put:

D =
{

(x, y) ∈ R2/a ≤ x ≤ b and ϕ(x) ≤ y ≤ ψ(x)
}
.

Then ∫ ∫
D

f(x, y)dxdy =

∫ b

a

[∫ ψ(x)

ϕ(x)

f(x, y)dy

]
dx

Remarks 5.4.1.

1) Particular case

If: f(x, y) = 1, then: ∫
D

dxdy = A(D) is the area of D.

2) We can swap the roles of x and y.

Example 5.4.1.

We calculate:

∫ ∫
Ω

xy2dxdy, where Ω = [0, 1]× [0, 2].

I =

∫ 1

0

[∫ 2

0

xy2dy

]
dx =

∫ 1

0

[
1

3
xy3dy

]2

0

dx =

∫ 1

0

[
8

3
x

]
dx =

[4
3
x2
]1

0
=

4

3
.

We note that: I =

∫ 2

0

[∫ 1

0

xy2dx

]
dy

Example 5.4.2. (Circle Area S1 : x2 + y2 = 1).

We calculate the integral using polar coordinates

x = rcosθ, y = rsinθ

to get∫ ∫
S1
dxdy =

∫ 2π

0

[∫ r

0

rdr

]
dθ =

∫ 2π

0

[
1

2
r2]dθ = πr2.
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5.4.2 Triple integral

D = [a1, b1]× [a2, b2]× [a3, b3]∫ ∫ ∫
D

f(x, y, z)dxdydz =

∫ b1

a1

(∫ b2

a2

(∫ b3

a3

f(x, y, z)dz

)
dy

)
dx

Particular case

If f = 1 :

∫ ∫ ∫
D

dxdydz = V (D) is volume of D.

Example 5.4.3.∫ 1

0

[∫ 2

1

[∫ 3

0

(x− y)dz

]
dy

]
dx =

∫ 1

0

[∫ 2

1

[(x− y)z]30 dy

]
dx

=

∫ 1

0

[∫ 2

1

(x− y)3dy

]
dx

=

∫ 1

0

[
xy − 3

2
y2

]2

1

dx

=

∫ 1

0

(
3x− 9

2

)
dx

=

[
3

2
x2 − 9

2
x

]1

0

=
3

2
− 9

2
= −3

Particular case

f = 1

∫ ∫ ∫
D

dxdydz = V (D) volume of D.
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5.4 Double and triple integral

Exercise:
Show that the volume of the sphere S2 is V = 4

3
πR3, where R is the radius of S2.

Solution:
We have r2 = R2 − z2, then

V =

∫ R

−R
πr2dz =

∫ R

−R
π(R2 − z2)dz

= π

[
R2z − 1

3
z3

]R
−R

=
4

3
πR3
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