Université Djillali Liabes de Sidi Bel Abbès Faculté de Technologie Département d'hydraulique Filière : 3^{ième} Année Licence hydraulique

Durée: 1H30

Solution : EMD 2 (Assainissement)

Questions de Cours

- 1. Les classifications des eaux usées (0.5pts)
 - Les eaux usées domestiques (0.25pts)
 - Les eaux usées industrielles (**0.25pts**)
- 2. Les différents systèmes d'évacuation (2pts)
 - Système unitaire (**0.5pts**)
 - Système séparatif (**0.5pts**)
 - Système pseudo- Séparatif (**0.5pts**)
 - Réseau mixte (**0.5pts**)
- 3. Les différents schémas évacuation des eaux usées (3pts)
 - Schéma perpendiculaire (**0.5pts**)
 - Schéma collecteur latéral (**0.5pts**)
 - Schéma type collecteur transversal (**0.5pts**)
 - Schéma centre collecteur unique (**0.5pts**)
 - Schéma type radial (**0.5pts**)
 - Schéma par zones étagées (**0.5pts**)
- 4. Les différentes formules utilisées pour évaluation les débits des eaux pluviales (1pts)
 - La méthode rationnelle (**0.5pts**)
 - La formule superficielle (CAQUOT) (**0.5pts**)
- 5. Les deux lois utilisées pour déterminer la hauteur de la P_{j,max annuelle} (1pts)
 - Loi de GALTON (**0.5pts**)
 - Loi de GUMBEL (**0.5pts**)
- 6. Le diamètre minimal utilisé dans le réseau pluvial ou unitaire (1pts)
 - Le diamètre minimal est Ø 300 (1pts)
- 7. Citer les différents types de déversoir (1.5pts)
 - Déversoir à seuil latéral et à conduite avale étranglée (**0.5pts**)
 - Déversoir à seuil latéral et à conduite avale libre (**0.5pts**)
 - Déversoir à ouverture de fond (**0.5pts**)

Solution exercice

1. Calcul surfaces des deux BV en hectare $(A_{BV1}$ et $A_{BV2})$

$$A_{BV1} = 10 \times 100 = 1000m^2 = 0.1hec$$
 (0.5pts)

$$A_{BV2} = 100 \times 100 = 10000m^2 = 1hec(0.5pts)$$

2. Calcul coefficients de ruissellement (C_{BV1} et C_{BV2})

$$C_{BV1} = \frac{\sum C_i A_i}{\sum A_i} = \frac{0.4 \times 25 + 0.6 \times 975}{1000} = 0.6 (0.5 \text{pts})$$

$$C_{BV2} = \frac{\sum C_i \cdot A_i}{\sum A_i} = \frac{0.4 \times 100 + 0.6 \times 9900}{10000} = 0.6$$
(0.5pts)

Université Djillali Liabes de Sidi Bel Abbès Faculté de Technologie Département d'hydraulique Filière : 3^{ième} Année Licence hydraulique

Durée: 1H30

3. Calcul de l'intensité de pluie

$$i_{BV1} = 23 \times t_c^{-0.75} = 23 \times 3^{-0.75} = 10.09 \frac{mm}{min} = 605.4 mm/h(0.5 pts)$$

 $i_{BV2} = 23 \times t_c^{-0.75} = 23 \times 5^{-0.75} = 6.88 \frac{mm}{min} = 412.72 mm/h(0.5 pts)$

4. Calcul le débit de pluie

$$Q_{E.P}(BV1) = \frac{1}{360} \times 0.6 \times 605.4 \times 0.1 = 0.1 \frac{m^3}{s} (\textbf{0.5pts})$$

$$Q_{E.P}(BV2) = \frac{1}{360} \times 0.6 \times 412.72 \times 1 = 0.69 \frac{m^3}{s} (\textbf{0.5pts})$$

5. Calcul les paramètres hydrauliques

$$R_{q} = \frac{Q_{E.P}}{Q_{ps}}$$

$$R_{v} = \frac{V}{V_{ps}} => V = R_{v}.V_{ps}$$

$$R_{h} = \frac{H}{D} => H = R_{h}.D$$

	(1pts)	(1pts)	(1pts)	(1pts)	(1pts)	(1pts)
Tronçon	Ø (mm)	Q _{ps} (l/s)	R_Q	R _H	$\mathbf{R}_{\mathbf{v}}$	H (mm)
I	600	139	0.72	0.63	1.09	378
II	1200	880	0.78	0.66	1.12	792

La consulatation aura lieu le dimanche 26/05/2024 à 10h00 à la salle 34