Accès chercheur

EEDIS Laboratory

Evolutionary Engineering

and

Distributed Information Systems

Réseaux et Communication

Sécurité et Multimédia

Ingénierie des Connaissances

Data Mining & Web Intelligent

Interopérabilité des Systèmes d’information
& Bases de données

Développement Orienté Service

Ontology Pruning: WordNet Adaptation to Biomedical domain

Auteurs: » TOUMOUH Adil
» LEHIRECHE AHMED
» Dominic Widdows
» Malki Mimoun
Type : Conférence Internationale
Nom de la conférence : Conférence Internationale sur l’Informatique et ses Applications.(CIIA06)
Lieu : Saida Pays: Algérie
Lien : »
Publié le : 01-05-2006

This paper describes an automatic technique for adapting the WordNet noun taxonomy (Fellbaum, 1998) to the medical domain, by comparing the available senses of nouns given by WordNet with the distribution of words in the Ohsumed corpus (Hersh, Buckley, Leone and Hickam, 1994), a large selection of documents from the PubMed catalogue. Though specific in nature, our experiments are based on a very small set of assumptions about lexicosyntactic patterns in the English language, and are hence easily adapted to other domains and other languages where lexicosyntactic patterns are a reliable guide to semantic usage. This enables us in many cases to analyze ambiguous words and select the correct meaning for the biomedical domain.

Tous droits réservés - © 2019 EEDIS Laboratory