Accès chercheur

EEDIS Laboratory

Evolutionary Engineering

and

Distributed Information Systems

Réseaux et Communication

Sécurité et Multimédia

Ingénierie des Connaissances

Data Mining & Web Intelligent

Interopérabilité des Systèmes d’information
& Bases de données

Développement Orienté Service

The EE-method, an evolutionary engineering developer tool: neural net case study

Auteurs: » LEHIRECHE AHMED
» Rahmoun Abdellatif
Type : Conférence Internationale
Nom de la conférence : ACS/IEEE International Conference on Computer Systems and Applications, 2003. Book of Abstracts
Lieu : Pays:
Lien : »
Publié le : 14-07-2003

Summary form only given. Evolutionary engineering (EE) challenge is to prove that it is possible to build systems (i.e. solutions) without going through any design process. Evolutionary engineering is defined to be "the art of using evolutionary algorithms approach such as genetic algorithms to build complex systems". Our main goal is to show that the EE-method is a good setting. We show step by step, using the EE-method, how to build a neural net based system. The EE-method can be viewed as just a GP appliance. The need of a well-specified approach determines the necessity for such a method. To bring the EE-method into operation, we had implemented software to build/evolve neural net-based systems. As an example, we present an evolved neural net Xor.

Tous droits réservés - © 2019 EEDIS Laboratory