Accès chercheur

EEDIS Laboratory

Evolutionary Engineering

and

Distributed Information Systems

Réseaux et Communication

Sécurité et Multimédia

Ingénierie des Connaissances

Data Mining & Web Intelligent

Interopérabilité des Systèmes d’information
& Bases de données

Développement Orienté Service

A Hybrid Grey Wolves Optimizer and Convolutional Neural Network for Pollen Grain Recognition

Auteurs: » Menad Hanane
» BEN-NAOUM Farah
» Abdelmalek Amine
Type : Revue Internationale
Nom du journal : International Journal of Swarm Intelligence Research (IJSIR) ISSN:
Volume : 11 Issue: 3 Pages: 49-71
Lien : »
Publié le : 01-07-2020

Melissopalynology, or pollen analysis of honey, is one of the areas that benefited greatly from image processing and analysis techniques, where melissopalynology is the science that studies the pollen contained in honey, using a microscopic examination. Nowadays, developing an automatic classification system for pollen identification presents a challenge. This article presents a metaheuristic for image segmentation to detect pollen grains in images. It is a swarm intelligence technique inspired from grey wolf hunting behavior in nature, centered around respecting the hierarchy of a pack. It was tested on a set of microscopic images of pollen grains. To evaluate pollen detection, we represented the detected pollen grains using two methods, grey-level based representations where we kept grey value of each pixel, and a binary mask-based technique, where a pixel could have only two values (1 or 0). Then, we used â€¦

Tous droits réservés - © 2019 EEDIS Laboratory