Accès chercheur

EEDIS Laboratory

Evolutionary Engineering

and

Distributed Information Systems

Réseaux et Communication

Sécurité et Multimédia

Ingénierie des Connaissances

Data Mining & Web Intelligent

Interopérabilité des Systèmes d’information
& Bases de données

Développement Orienté Service

Deep Convolutional Neural Network for Pollen Grains Classification

Auteurs: » Menad Hanane
» BEN-NAOUM Farah
» Abdelmalek Amine
Type : Conférence Internationale
Nom de la conférence : JERI
Lieu : Pays:
Lien : »
Publié le : 01-01-2019

The beekeeping is the art of cultivating the bees in the aim to remove from this industry the maximum performance with the minimum expenditure. The apiculture products marketed are the honey, wax, pollen, propolis and royal jelly. This activity of topping up contributes to the development of the livestock and to the protection of the Environment. This paper presents the application of deep convolutional neural network for pollen grains recognition based on their images classification. The neural network contains 8 hidden layers where first 5 are convolutionnal neurones responsible for image representations and next 3 are fully connected layers for image classification. The obtained results proved the efficiency of the proposed approach for pollen grains recognition.

Tous droits réservés - © 2019 EEDIS Laboratory