Accès chercheur

EEDIS Laboratory

Evolutionary Engineering

and

Distributed Information Systems

Réseaux et Communication

Sécurité et Multimédia

Ingénierie des Connaissances

Data Mining & Web Intelligent

Interopérabilité des Systèmes d’information
& Bases de données

Développement Orienté Service

Perceptual evaluation of adversarial attacks for CNN-based image classification

Auteurs: » Bakhti Yassine
» Hamidouche Wassim
» Deforges Olivier
Type : Conférence Internationale
Nom de la conférence : 2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX)
Lieu : Pays:
Lien : »
Publié le : 05-06-2019

Deep neural networks (DNNs) have recently achieved state-of-the-art performance and provide significant progress in many machine learning tasks, such as image classification, speech processing, natural language processing, etc. However, recent studies have shown that DNNs are vulnerable to adversarial attacks. For instance, in the image classification domain, adding small imperceptible perturbations to the input image is sufficient to fool the DNN and to cause misclassification. The perturbed image, called adversarial example, should be visually as close as possible to the original image. However, all the works proposed in the literature for generating adversarial examples have used the L p norms (L 0 , L 2 and L ∞ ) as distance metrics to quantify the similarity between the original image and the adversarial example. Nonetheless, the L p norms do not correlate with human judgment, making them not â€¦

Tous droits réservés - © 2019 EEDIS Laboratory