Accès chercheur

EEDIS Laboratory

Evolutionary Engineering

and

Distributed Information Systems

Réseaux et Communication

Sécurité et Multimédia

Ingénierie des Connaissances

Data Mining & Web Intelligent

Interopérabilité des Systèmes d’information
& Bases de données

Développement Orienté Service

A GPU Based Approach for Solving the Workflow Scheduling Problem

Auteurs: » BENHAMMOUDA Mohamed
» Malki Mimoun
Type : Revue Internationale
Nom du journal : International Journal of Information Retrieval Research (IJIRR) ISSN:
Volume : 9 Issue: 4 Pages: 1-12
Lien : »
Publié le : 01-10-2019

Cloud computing is considered a new way to use on-demand computing resources. When executing a workflow process in such an environment, task scheduling, a well-known NP-hard problem is a very important step. Many heuristic algorithms have been proposed to solve this problem. In this article, the authors present a GPU-based approach for solving the workflow scheduling problem. The main idea of the approach is to implement a massively parallel version of the simulated annealing algorithm, in an asynchronous way where no information is exchanged among parallel runs. The proposed approach, called PSA algorithm, is against another well-established scheduling HEFT heuristic. Experiments with randomly generated graphs show a much better performance from the proposed approach.

Tous droits réservés - © 2019 EEDIS Laboratory