Accès chercheur

EEDIS Laboratory

Evolutionary Engineering

and

Distributed Information Systems

Réseaux et Communication

Sécurité et Multimédia

Ingénierie des Connaissances

Data Mining & Web Intelligent

Interopérabilité des Systèmes d’information
& Bases de données

Développement Orienté Service

Ddsa: a defense against adversarial attacks using deep denoising sparse autoencoder

Auteurs: » Bakhti Yassine
» Hamidouche Wassim
» Deforges Olivier
Type : Chapitre de Livre
Edition : IEEE ISBN:
Lien : »
Publié le : 04-11-2019

Given their outstanding performance, the Deep Neural Networks (DNNs) models have been deployed in many real-world applications. However, recent studies have demonstrated that they are vulnerable to small carefully crafted perturbations, i.e., adversarial examples, which considerably decrease their performance and can lead to devastating consequences, especially for safety-critical applications, such as autonomous vehicles, healthcare and face recognition. Therefore, it is of paramount importance to offer defense solutions that increase the robustness of DNNs against adversarial attacks. In this paper, we propose a novel defense solution based on a Deep Denoising Sparse Autoencoder (DDSA). The proposed method is performed as a pre-processing step, where the adversarial noise of the input samples is removed before feeding the classifier. The pre-processing defense block can be associated with â€¦

Tous droits réservés - © 2019 EEDIS Laboratory