Accès chercheur

EEDIS Laboratory

Evolutionary Engineering

and

Distributed Information Systems

Réseaux et Communication

Sécurité et Multimédia

Ingénierie des Connaissances

Data Mining & Web Intelligent

Interopérabilité des Systèmes d’information
& Bases de données

Développement Orienté Service

Neuronal Communication Genetic Algorithm-Based Inductive Learning

Auteurs: » ALAOUI Abdiya
» ELBERRICHI Zakaria
Type : Revue Internationale
Nom du journal : Journal of Information Technology Research (JITR) ISSN:
Volume : 13 Issue: 2 Pages: 141-154
Lien : »
Publié le : 01-04-2020

The development of powerful learning strategies in the medical domain constitutes a real challenge. Machine learning algorithms are used to extract high-level knowledge from medical datasets. Rule-based machine learning algorithms are easily interpreted by humans. To build a robust rule-based algorithm, a new hybrid metaheuristic was proposed for the classification of medical datasets. The hybrid approach uses neural communication and genetic algorithm-based inductive learning to build a robust model for disease prediction. The resulting classification models are characterized by good predictive accuracy and relatively small size. The results on 16 well-known medical datasets from the UCI machine learning repository shows the efficiency of the proposed approach compared to other states-of-the-art approaches.

Tous droits réservés - © 2019 EEDIS Laboratory