Accès chercheur

EEDIS Laboratory

Evolutionary Engineering

and

Distributed Information Systems

Réseaux et Communication

Sécurité et Multimédia

Ingénierie des Connaissances

Data Mining & Web Intelligent

Interopérabilité des Systèmes d’information
& Bases de données

Développement Orienté Service

A New Intra Fine-Tuning Method Between Histopathological Datasets in Deep Learning

Auteurs: » DIF Nassima
» ELBERRICHI Zakaria
Type : Revue Internationale
Nom du journal : International Journal of Service Science, Management, Engineering, and Technology (IJSSMET) ISSN:
Volume : 11 Issue: 2 Pages: 16-40
Lien : »
Publié le : 01-04-2020

This article presents a new fine-tuning framework for histopathological images analysis. Despite the most common solutions where the ImageNet models are reused for image classification, this research sets out to perform an intra-domain fine tuning between the trained models on the histopathological images. The purpose is to take advantage of the hypothesis on the efficiency of transfer learning between non-distant datasets and to examine for the first time these suggestions on the histopathological images. The Inception-v3 convolutional neural network architecture, six histopathological source datasets, and four target sets as base modules were used in this article. The obtained results reveal the importance of the pre-trained histopathological models compared to the ImageNet model. In particular, the ICIAR 2018-A presented a high-quality source model for the various target tasks due to its capacity in â€¦

Tous droits réservés - © 2019 EEDIS Laboratory