Accès chercheur

EEDIS Laboratory

Evolutionary Engineering

and

Distributed Information Systems

Réseaux et Communication

Sécurité et Multimédia

Ingénierie des Connaissances

Data Mining & Web Intelligent

Interopérabilité des Systèmes d’information
& Bases de données

Développement Orienté Service

SOM-based Clustering of Textual Documents Using WordNet

Auteurs: » Abdelmalek Amine
» ELBERRICHI Zakaria
» Michel Simonet
» Bellatreche Ladjel
» Malki Mimoun
Type : Chapitre de Livre
Edition : Min Song, Yi-fang Brook Wu. In ISBN: 978-1-59904-
Lien : » https://www.igi-global.com/chapter/som-based-clustering-textual-documents/21725
Publié le : 01-01-2009

The classification of textual documents has been the subject of many studies. Technologies like the Web and numerical libraries facilitated the exponential growth of available documentation. The classification of textual documents is very important since it allows the users to effectively and quickly fly over and understand better the contents of large corpora. Most classification approaches use the supervised method of training, more suitable with small corpora and when human experts are available to generate the best classes of data for the training phase, which is not always feasible. The unsupervised classification or “clustering” methods make emerge latent (hidden) classes automatically with minimum human intervention, There are many, and the SOM (self Organized Maps) by Kohonen is one of the algorithms for unsupervised classification that gather a certain number of similar objects in groups without a priori knowledge. This chapter introduces the concept of unsupervised classification of textual documents and proposes an experiment with a conceptual approach for the representation of texts and the method of Kohonen for clustering.

Tous droits réservés - © 2019 EEDIS Laboratory