Accès chercheur

EEDIS Laboratory

Evolutionary Engineering

and

Distributed Information Systems

Réseaux et Communication

Sécurité et Multimédia

Ingénierie des Connaissances

Data Mining & Web Intelligent

Interopérabilité des Systèmes d’information
& Bases de données

Développement Orienté Service

Sentiment analysis of Algerian Arabic dialect on social media Using Bi-LSTM recurrent neural networks

Auteurs: » BOUZIANE Abdelghani
» BOUCHIHA Djelloul
» DOUMI Noureddine
Type : Revue Internationale
Nom du journal : ISSN:
Volume : Issue: Pages:
Lien : » https://periodicos.ufv.br/jcec/article/view/20058
Publié le : 07-10-2024

This paper presents a sentiment analysis approach using Bidirectional Long Short-Term Memory (Bi-LSTM) Recurrent Neural Networks to train predictive models for sentiment analysis on social media, particularly focusing on Algerian Arabic Dialect. The method leverages word-to-vector embedding for word representation and incorporates natural language understanding of emojis to improve semantic interpretation. The model achieves a high accuracy of 94%, demonstrating its effectiveness in analyzing sentiments in online discussions. The originality lies in applying Bi-LSTM to handle multilingual challenges on social platforms. The findings have practical implications for business, policymaking, and public sentiment evaluation, while also contributing positively to fostering informed online discourse.

Tous droits réservés - © 2019 EEDIS Laboratory