Accès chercheur

EEDIS Laboratory

Evolutionary Engineering

and

Distributed Information Systems

Réseaux et Communication

Sécurité et Multimédia

Ingénierie des Connaissances

Data Mining & Web Intelligent

Interopérabilité des Systèmes d’information
& Bases de données

Développement Orienté Service

Advancements and challenges in Arabic question answering systems: a comprehensive survey

Auteurs: » BOUZIANE Abdelghani
» BOUCHIHA Djelloul
Type : Revue Internationale
Nom du journal : ISSN:
Volume : Issue: Pages:
Lien : » https://ojs.brazilianjournals.com.br/ojs/index.php/BJT/article/view/75604
Publié le : 12-12-2024

This paper explores the development and challenges of Arabic Question Answering Systems (QAS), with a particular focus on addressing the linguistic nuances and data scarcity unique to Arabic. It categorizes Arabic QAS by domain (open or closed), question type (factoid, causal, complex), and modeling approach (rule-based, machine learning, deep learning). Key recent systems are reviewed, including their methodologies, datasets, and performance metrics, highlighting the growing role of deep learning techniques. State-of-the-art NLP methods, especially transformers, have greatly advanced QAS, although these gains are more substantial for English. Despite recent progress, Arabic QAS research remains limited by resource constraints, including a reliance on translated datasets and the absence of comprehensive Arabic benchmarks.

Tous droits réservés - © 2019 EEDIS Laboratory