Accès chercheur

EEDIS Laboratory

Evolutionary Engineering

and

Distributed Information Systems

Réseaux et Communication

Sécurité et Multimédia

Ingénierie des Connaissances

Data Mining & Web Intelligent

Interopérabilité des Systèmes d’information
& Bases de données

Développement Orienté Service

Fine-tuning AraGPT2 for Hierarchical Arabic Text Classification

Auteurs: » BOUCHIHA Djelloul
» BOUZIANE Abdelghani
» DOUMI Noureddine
» Benamar HAMZAOUI
Type : Revue Internationale
Nom du journal : ISSN:
Volume : Issue: Pages:
Lien : » https://www.setjournal.com/SET/article/view/224
Publié le : 03-01-2025

Text classification consists in attributing a text to its corresponding category. It is a crucial task in natural language processing (NLP), with applications spanning content recommendation, spam detection, sentiment analysis, and topic categorization. While significant advancements have been made in text classification for widely spoken languages, Arabic remains underrepresented despite its large and diverse speaker base. Another challenge is that, unlike flat classification, hierarchical text classification involves categorizing texts into a multi-level taxonomy. This adds layers of complexity, particularly in distinguishing between closely related categories within the same super-class. To tackle these challenges, we propose a novel approach using AraGPT2, a variant of the Generative Pre-trained Transformer 2 (GPT-2) model adapted specifically for Arabic. Fine-tuning AraGPT2 for hierarchical text classification leverages the model's pre-existing linguistic knowledge and adapts it to recognize and classify Arabic text according to hierarchical structures. Fine-tuning, in this context, refers to the process of training a pre-trained model on a specific task or dataset to improve its performance on that task. Our experiments and comparative study demonstrate the efficiency of our solution. The fine-tuned AraGPT2 classifier achieves a hierarchical HF score of 80.64%, outperforming the machine learning-based classifier, which scores 41.90%.

Tous droits réservés - © 2019 EEDIS Laboratory