Accès chercheur

EEDIS Laboratory

Evolutionary Engineering

and

Distributed Information Systems

Réseaux et Communication

Sécurité et Multimédia

Ingénierie des Connaissances

Data Mining & Web Intelligent

Interopérabilité des Systèmes d’information
& Bases de données

Développement Orienté Service

Edited Nearest Neighbors with SVM for Customer Churn Prediction in Spark

Auteurs: » Mohammed MERABET
Type : Conférence Internationale
Nom de la conférence : Artificial Intelligence and Heuristics for Smart Energy Efficiency in Smart Cities.
Lieu : Pays:
Lien : » https://link.springer.com/chapter/10.1007/978-3-030-92038-8_68
Publié le : 25-11-2021

Nowadays, churn prediction is the most common Big Data application in the telecoms industry, However, the characteristic of unbalanced classes in this kind of application opens a possibility to explore unbalanced data handling techniques. Apache Spark is a Big Data platform designed for fast and distributed massive data processing. To the best of our knowledge, no studies have been conducted on the use of Edited Nearest Neighbors (ENN) for handling imbalanced data in the Spark context. Therefore, this work aims to investigate the effects of using several techniques with SVM to balance datasets. The experimentations show ENN combined with SVM can reach significantly higher values than others for AUC and F1-score metrics.

Tous droits réservés - © 2019 EEDIS Laboratory