Accès chercheur

EEDIS Laboratory

Evolutionary Engineering

and

Distributed Information Systems

Réseaux et Communication

Sécurité et Multimédia

Ingénierie des Connaissances

Data Mining & Web Intelligent

Interopérabilité des Systèmes d’information
& Bases de données

Développement Orienté Service

“A Multi-Objective Hybrid Particle Swarm Optimization- based Sevrice Identification.

Auteurs: » Mohammed MERABET
Type : Conférence Internationale
Nom de la conférence : The International Conference on Advanced Aspects of Software Engineering
Lieu : Pays:
Lien : » http://ceur-ws.org/Vol-1294/paper6.pdf
Publié le : 04-11-2014

Service identification step is a basic requirement for a detailed design and implementation of
services in a Service Oriented Architecture (SOA). Existing methods for service identification ignore the
automation capability while providing human based prescriptive guidelines, which mostly are not applicable
at enterprise scales. In this paper, we propose a top down approach to identify automatically services from
business process. We use for clustering a hybrid particle swarm optimization algorithm and several design
metrics for produce reusable services with proper granularity and acceptable level of cohesion and coupling.
The experimental results show that our method HPSOSI (Hybrid Particle Swarm Algorithm for Service
Identification) can achieve a high performance in terms of execution time, and significant quality in terms of
high modularization, strong cohesion, and weak coupling of the identified services..

Tous droits réservés - © 2019 EEDIS Laboratory